Chromatine immunoprecipitation (ChIP-seq) for RBPJ and SOX2 in Triple negative breast cancer MB157 cells and GSI-resistant MB157R cells upon induction of Notch1 or Sox2 signaling.
Ontology highlight
ABSTRACT: Cell plasticity of Triple negative breast cancer (TNBC) contributes to tumor heterogeneity and is one of the major reasons for the limited success of chemo- or combination therapies in the clinics. The molecular mechanisms of therapy-induced tumor cell plasticity and associated resistance to chemo or targeted therapies are largely unknown. Using a genome wide CRISPR-Cas9 screen we investigated the escape mechanisms of Notch driven TNBC, when treated with targeted therapy. We describe molecularly a reciprocal inhibitory feedback mechanism between Notch signaling and the pluripotency associated transcription factor SOX2, which shapes divergent cell states, EMT, cancer stem cell features and associates with therapeutic response and escape to targeted therapy. Moreover, we performed and assessed monotherapy and drug combination treatments in Notch-inhibitor sensitive and resistant TNBC xenotransplant and identified combination and second line treatment options which were able to induce tumor control and reduce metastatic burden.
Project description:Cell plasticity of Triple negative breast cancer (TNBC) contributes to tumor heterogeneity and is one of the major reasons for the limited success of chemo- or combination therapies in the clinics. The molecular mechanisms of therapy-induced tumor cell plasticity and associated resistance to chemo or targeted therapies are largely unknown. Using a genome wide CRISPR-Cas9 screen we investigated the escape mechanisms of Notch driven TNBC, when treated with targeted therapy. We describe molecularly a reciprocal inhibitory feedback mechanism between Notch signaling and the pluripotency associated transcription factor SOX2, which shapes divergent cell states, EMT, cancer stem cell features and associates with therapeutic response and escape to targeted therapy. Moreover, we performed and assessed monotherapy and drug combination treatments in Notch-inhibitor sensitive and resistant TNBC xenotransplant and identified combination and second line treatment options which were able to induce tumor control and reduce metastatic burden.
Project description:Cell plasticity of Triple negative breast cancer (TNBC) contributes to tumor heterogeneity and is one of the major reasons for the limited success of chemo- or combination therapies in the clinics. The molecular mechanisms of therapy-induced tumor cell plasticity and associated resistance to chemo or targeted therapies are largely unknown. Using a genome wide CRISPR-Cas9 screen we investigated the escape mechanisms of Notch driven TNBC, when treated with targeted therapy. We describe molecularly a reciprocal inhibitory feedback mechanism between Notch signaling and the pluripotency associated transcription factor SOX2, which shapes divergent cell states, EMT, cancer stem cell features and associates with therapeutic response and escape to targeted therapy. Moreover, we performed and assessed monotherapy and drug combination treatments in Notch-inhibitor sensitive and resistant TNBC xenotransplant and identified combination and second line treatment options which were able to induce tumor control and reduce metastatic burden.
Project description:Triple-negative breast cancer (TNBC) is a highly aggressive and heterogeneous disease that often relapses following treatment with standard radiotherapies and cytotoxic chemotherapies. Combination therapies have potential for treating refractory metastatic TNBC. Here, we aimed to develop an antibody-drug conjugate with dual payloads (DualADC) as a chemo-immunotherapy for TNBC. The overexpression of an immune checkpoint transmembrane CD276 (also known as B7-H3) was associated with angiogenesis, metastasis, and immune tolerance, in over 60% of TNBC patients. Development of a monoclonal antibody (mAb) capable of targeting the extracellular domain of surface CD276 enabled delivery of payloads to tumors, and a platform was established for concurrent conjugation of a traditional cytotoxic payload and an immunoregulating toll-like receptor 7/8 agonist to the CD276 mAb. The DualADC effectively killed multiple TNBC subtypes, significantly enhanced immune functions in the tumor microenvironment, and reduced tumor burden by up to 90-100% in animal studies. Single-cell RNA-sequencing, multiplex cytokine analysis, and histology elucidated the impact of treatment on tumor cells and the immune landscape. This study suggests that the developed DualADC could represent a promising targeted chemo-immunotherapy for TNBC.
Project description:Triple negative breast cancer (TNBC) lacks targeted therapy options. TNBC is enriched in breast cancer stem cells (BCSCs), which play a key role in metastasis, chemoresistance, relapse and mortality. γδ T cells hold great potential in immunotherapy against cancer, and might be an alternative to target TNBC. γδ T cells are commonly observed to infiltrate solid tumors and have an extensive repertoire of tumor sensing, recognizing stress-induced molecules and phosphoantigens (pAgs) on transformed cells. We show that patient derived triple negative BCSCs are efficiently recognized and killed by ex vivo expanded γδ T cells from healthy donors. Orthotopically xenografted BCSCs, however, were refractory to γδ T cell immunotherapy. Mechanistically, we unraveled concerted differentiation and immune escape: xenografted BCSCs lost stemness, expression of γδ T cell ligands, adhesion molecules and pAgs, thereby evading immune recognition by γδ T cells. Indeed, neither pro-migratory engineered γδ T cells, nor anti-PD 1 checkpoint blockade significantly prolonged overall survival of tumor-bearing mice. BCSC immune escape was independent of the immune pressure exerted by the γδ T cells, and could be pharmacologically reverted by Zoledronate or IFN-α treatment. These results pave the way for novel combinatorial immunotherapies for TNBC.
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance. ChIP-seq in parental and JQ1 resistant triple negative breast cancer (TNBC) in response to DMSO or JQ1 treatment
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance. Chem-Seq in parental and JQ1 resistant triple negative breast cancer (TNBC)
Project description:Triple-negative breast cancer (TNBC) is defined as pathologically negative for estrogen receptor α (ER-), progesterone receptor (PR-), and human epidermal growth factor receptor 2 (HER2) amplification. TNBCs are a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy, recently supplemented by immunotherapy [37296893]. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including gamma secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. We confirmed that SS, a known gamma secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, the anti-tumor effects of SS were significantly enhanced when combined with α-PD1 immunotherapy in our TNBC organoids and in vivo. Our data support further investigation of SS for the treatment of TNBC, in conjunction with standard of care chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option solution for a patient population in need of effective therapies.
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance. RNA-Seq in parental and JQ1 resistant triple negative breast cancer (TNBC) in response to DMSO or JQ1 treatment over time
Project description:Next generation sequencing was used to identify Notch mutations in a large collection of diverse solid tumors. NOTCH1 and NOTCH2 rearrangements leading to constitutive receptor activation were confined to triple negative breast cancers (TNBC, 6 of 66 tumors). TNBC cell lines with NOTCH1 rearrangements associated with high levels of activated NOTCH1 (N1-ICD) were sensitive to the gamma-secretase inhibitor (GSI) MRK-003, both alone and in combination with pacitaxel, in vitro and in vivo, whereas cell lines with NOTCH2 rearrangements were resistant to GSI. Immunohistochemical staining of N1-ICD in TNBC xenografts correlated with responsiveness, and expression levels of the direct Notch target gene HES4 correlated with outcome in TNBC patients. Activating NOTCH1 point mutations were also identified in other solid tumors, including adenoid cystic carcinoma (ACC). Notably, ACC primary tumor xenografts with activating NOTCH1 mutations and high N1-ICD levels were sensitive to GSI, whereas N1-ICD low tumors without NOTCH1 mutations were resistant. Gene expression profiling for Notch-sensitive cancer cell lines using RNA-seq, each sample with triplicates
Project description:Lineage plasticity and stemness have been invoked as the cause of therapy resistance in cancer, as these flexible states allow cancer cells to de-differentiate and alter their dependencies. We investigated such resistance mechanisms in relapsed / refractory early T-cell progenitor acute lymphoblastic leukemia carrying activating NOTCH1 mutations, by full-length single cell RNA sequencing of malignant and microenvironmental cells. We identified two highly distinct stem-like states that critically differ in their cell-cycle and oncogenic signaling. Fast-cycling stem-like leukemia cells demonstrate Notch activation and are effectively eliminated in patients by Notch inhibition, while slow cycling stem-like cells are Notch-independent but rather rely on PI3K signaling, likely explaining the poor efficacy of Notch inhibition in this disease. Remarkably, we find that both stem-like states can differentiate into a more mature leukemia state with prominent immune-modulatory functions, including high expression of the LGALS9 checkpoint molecule. These cells promote an immunosuppressive leukemia ecosystem with clonal accumulation of dysfunctional CD8+ T cells that express HAVCR2, the cognate receptor for LGALS9. Our study identifies complex interactions between signaling programs, cellular plasticity and immune programs that characterize T-ALL and illustrates the multi-dimensionality of tumor heterogeneity. In this scenario, combination therapies targeting diverse oncogenic states and the immune ecosystem appear most promising to successfully eliminate tumor cells that escape treatment through co-existing transcriptional programs.