Transcriptomics

Dataset Information

0

GCN2 drives diurnal patterns in the hepatic integrated stress response and maintains circadian rhythms in whole body metabolism during amino acid insufficiency


ABSTRACT: Disruptions in circadian rhythms are associated with increased risk of developing metabolic diseases. General control nonderepressible 2 (GCN2), a primary sensor of amino acid insufficiency and activator of the integrated stress response (ISR), has emerged as a conserved regulator of the circadian clock in multiple organisms. The objective of this study was to examine diurnal patterns in hepatic ISR activation in the liver and whole-body rhythms in metabolism. We hypothesized that GCN2 activation cues hepatic ISR signaling over a natural 24 h feeding fasting cycle. To address our objective, wild type (WT) and whole body Gcn2 knockout (GCN2 KO) mice were housed in metabolic cages and provided free access to either a Control or leucine-devoid diet (LeuD) for 8-days in total darkness. On the last day, blood and livers were collected at circadian time (CT) 3 and CT15. In livers of WT mice, GCN2 phosphorylation followed a diurnal pattern that was guided by intracellular branched chain amino acid concentrations (r2=0.93). Feeding LeuD to WT mice increased hepatic ISR activation at CT15 only. Diurnal oscillation in hepatic ISR signaling, the hepatic transcriptome including lipid metabolic genes, and triglyceride concentrations were substantially reduced or absent in GCN2 KO mice. Further, mice lacking GCN2 were unable to maintain circadian rhythms in whole body energy expenditure, respiratory exchange ratio and physical activity when fed LeuD. In conclusion, GCN2 activation functions to maintain diurnal ISR activation in the liver and has a vital role in the mechanisms by which nutrient stress affects whole-body metabolism.

ORGANISM(S): Mus musculus

PROVIDER: GSE262319 | GEO | 2024/08/27

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

| PRJNA1091330 | ENA
2014-08-08 | PXD001211 | Pride
2022-07-26 | GSE199998 | GEO
2024-04-22 | GSE231940 | GEO
2022-07-01 | GSE179559 | GEO
2016-06-15 | E-GEOD-79929 | biostudies-arrayexpress
2016-06-15 | E-GEOD-79926 | biostudies-arrayexpress
2020-02-11 | GSE144996 | GEO
2017-04-04 | PXD005556 | Pride
2024-03-06 | GSE239867 | GEO