Construction of Danio rerio Asymmetrical Maps (DreAM)
Ontology highlight
ABSTRACT: Purpose: Construction of 3D zebrafish spatial transcriptomics data for studying the establishment of AP axis. Methods: We performed serial bulk RNA-seq data of zebrafish embryo at three development points. Using the published spatial transcriptomics data as references, we implemented Palette to infer spatial gene expression from bulk RNA-seq data and constructed 3D embryonic spatial transcriptomics. The constructed 3D transcriptomics data was then projected on zebrafish embryo images with 3D coordinates, establishing a spatial gene expression atlas named Danio rerio Asymmetrical Maps (DreAM). Results: DreAM provides a powerful platform for visualizing gene expression patterns on zebrafish morphology and investigating spatial cell-cell interactions. Conclusions: Our work used DreAM to explore the establishment of anteroposterior (AP) axis, and identified multiple morphogen gradients that played essential roles in determining cell AP positions. Finally, we difined a hox score, and comprehensively demonstrated the spatial collinearity of Hox genes at single-cell resolution during development.
Project description:The spatial and temporal control of Hox gene transcription is essential for patterning the vertebrate body axis. Although this process involves changes in histone posttranslational modifications, the existence of particular three-dimensional (3D) architectures remained to be assessed in vivo. Using high-resolution chromatin conformation capture methodology, we examined the spatial configuration of Hox clusters in embryonic mouse tissues where different Hox genes are active. When the cluster is transcriptionally inactive, Hox genes associate into a single 3D structure delimited from flanking regions. Once transcription starts, Hox clusters switch to a bimodal 3D organization where newly activated genes progressively cluster into a transcriptionally active compartment. This transition in spatial configurations coincides with the dynamics of chromatin marks, which label the progression of the gene clusters from a negative to a positive transcription status. This spatial compartmentalization may be key to process the collinear activation of these compact gene clusters. Examination of gene expression in 3 cell types. Examination of 2 different histone modifications in 2 cell types.
Project description:The spatial and temporal control of Hox gene transcription is essential for patterning the vertebrate body axis. Although this process involves changes in histone posttranslational modifications, the existence of particular three-dimensional (3D) architectures remained to be assessed in vivo. Using high-resolution chromatin conformation capture methodology, we examined the spatial configuration of Hox clusters in embryonic mouse tissues where different Hox genes are active. When the cluster is transcriptionally inactive, Hox genes associate into a single 3D structure delimited from flanking regions. Once transcription starts, Hox clusters switch to a bimodal 3D organization where newly activated genes progressively cluster into a transcriptionally active compartment. This transition in spatial configurations coincides with the dynamics of chromatin marks, which label the progression of the gene clusters from a negative to a positive transcription status. This spatial compartmentalization may be key to process the collinear activation of these compact gene clusters.
Project description:Hox genes are essential regulators of embryonic development. They are activated in a temporal sequence following their topological order within their genomic clusters. Subsequently, states of activity are fine-tuned and maintained to translate into domains of progressively overlapping gene products. While the mechanisms underlying such temporal and spatial progressions begin to be understood, many of their aspects remain unclear. We have systematically analyzed the 3D chromatin organization of Hox clusters in vivo, during their activation using high-resolution circular chromosome conformation capture (4C-seq). Initially, Hox clusters are organized as single 3D chromatin compartments decorated with bivalent chromatin marks. Their progressive transcriptional activation is associated with a dynamic bi-modal 3D organization, whereby the genes switch one after the other, from an inactive to an active 3D compartment. These local 3D dynamics occur within a larger constitutive framework of interactions within the surrounding Topological Associated Domains, which confirms previous results that regulation of this process in primarily cluster intrinsic. The local step-wise progression in time can be stopped and memorized at various body levels and hence it may accounts for the various chromatin architectures previously described at different anterior to posterior body levels for the same embryo at a later stage. Circular Chromosome Conformation Capture (4C-seq) samples from mouse ES cells and mouse embryonic samples at different stages of development. Data based on 41 biological samples.
Project description:Hox genes are essential regulators of embryonic development. They are activated in a temporal sequence following their topological order within their genomic clusters. Subsequently, states of activity are fine-tuned and maintained to translate into domains of progressively overlapping gene products. While the mechanisms underlying such temporal and spatial progressions begin to be understood, many of their aspects remain unclear. We have systematically analyzed the 3D chromatin organization of Hox clusters in vivo, during their activation using high-resolution circular chromosome conformation capture (4C-seq). Initially, Hox clusters are organized as single 3D chromatin compartments decorated with bivalent chromatin marks. Their progressive transcriptional activation is associated with a dynamic bi-modal 3D organization, whereby the genes switch one after the other, from an inactive to an active 3D compartment. These local 3D dynamics occur within a larger constitutive framework of interactions within the surrounding Topological Associated Domains, which confirms previous results that regulation of this process in primarily cluster intrinsic. The local step-wise progression in time can be stopped and memorized at various body levels and hence it may accounts for the various chromatin architectures previously described at different anterior to posterior body levels for the same embryo at a later stage. RNA-seq from mouse ES cells and mouse embryonic stage E10.5 forebrain. Data based on 2 biological samples.
Project description:Hox genes are essential regulators of embryonic development. They are activated in a temporal sequence following their topological order within their genomic clusters. Subsequently, states of activity are fine-tuned and maintained to translate into domains of progressively overlapping gene products. While the mechanisms underlying such temporal and spatial progressions begin to be understood, many of their aspects remain unclear. We have systematically analyzed the 3D chromatin organization of Hox clusters in vivo, during their activation using high-resolution circular chromosome conformation capture (4C-seq). Initially, Hox clusters are organized as single 3D chromatin compartments decorated with bivalent chromatin marks. Their progressive transcriptional activation is associated with a dynamic bi-modal 3D organization, whereby the genes switch one after the other, from an inactive to an active 3D compartment. These local 3D dynamics occur within a larger constitutive framework of interactions within the surrounding Topological Associated Domains, which confirms previous results that regulation of this process in primarily cluster intrinsic. The local step-wise progression in time can be stopped and memorized at various body levels and hence it may accounts for the various chromatin architectures previously described at different anterior to posterior body levels for the same embryo at a later stage. ChIP-seq samples (H3K4me3 and H3K27me3) from mouse ES cells and mouse embryonic stage E8.5 pre-somitic mesoderm. Data based on 4 biological samples.
Project description:The evolutionarily conserved Hox genes define segment identities along the anterior-posterior axis and are expressed in most cell types within each segment, performing specific functions tailored to cellular needs. It has been suggested previously that Drosophila adult flight muscles in the second thoracic segment (T2) develop without direct Hox gene input, relying instead on ectodermal signals to shape their identity. However, our research, leveraging single-cell transcriptomics of Drosophila wing discs and Hox perturbation experiments using CRISPR technology and gain-of-function assays, unveiled a more intricate regulatory landscape. We found that the Hox protein Antennapedia (Antp) is essential for adult flight muscle development, acting in two critical ways: by regulating the cell cycle rate of adult muscle precursors (AMPs) through repression of proliferation genes, and by guiding flight muscle fate via regulation of Hedgehog (Hh) signalling during cell fate establishment. Antp, along with its cofactor Apterous (Ap), directly interacts with the patched (ptc) locus to control its expression in AMPs. These findings challenge the notion of T2 as a "Hox-free" zone, highlighting the indispensable role of low-level Antp expression in adult muscle development.
Project description:Advancing our understanding of embryonic development is heavily dependent on identification of novel pathways or regulators. While genome-wide techniques such as RNA sequencing are ideally suited for discovering novel candidate genes, they are unable to yield spatially resolved information in embryos or tissues. Microscopy-based approaches, using for example in situ hybridization, can provide spatial information about gene expression, but are limited to analyzing one or a few genes at a time. Here, we present a method where we combine traditional histological techniques with low-input RNA sequencing and mathematical image reconstruction to generate a high-resolution genome-wide 3D atlas of gene expression in the zebrafish embryo at three developmental stages. We also demonstrate that our technique is suitable for spatially-resolved differential expression analysis in wildtype and Gli3 mutant mouse forelimbs. Importantly, our method enables searching for genes that are expressed in specific spatial patterns without manual image annotation. We envision broad applicability of RNA tomography as an accurate and sensitive approach for spatially resolved transcriptomics in whole embryos and dissected organs. To generate spatially-resolved RNA-seq data for zebrafish embryos (shield stage, 10 somites, 15 somites, 18 somites) and mouse forelimbs (E10.5), we cryosectioned samples, extracted RNA from the individual sections, and amplified and barcoded mRNA using the CEL-seq protocol (Hashimshony et al., Cell Reports, 2012) with a few modifications. Libraries were sequenced on Illumina HiSeq 2500 using 50bp paired end sequencing. Selected zebrafish libraries were sequenced on MiSeq 250bp paired-end to improve 3' annotations.
Project description:These data were used in the spatial transcriptomics analysis of the article titled \\"Single-Cell and Spatial Transcriptomics Analysis of Human Adrenal Aging\\".
Project description:We employed transcriptomics methods to examine RNAs from the nuclear and cytosolic fractions from zebrafish embryos at different stages of development. The RNA-seq revealed spatial and temporal regulation of lncRNA expression during zebrafish development.