The Core Circadian Clock Factor, Bmal1, Transduces Sex-specific Differences in Both Rhythmic and Nonrhythmic Gene Expression in the Mouse Heart
Ontology highlight
ABSTRACT: Sexual dimorphism in mammals, including humans and laboratory rodents, has primarily been attributed to hormonal and sex chromosomal differences. Accumulating evidence now suggests that circadian rhythms also contribute to sexual dimorphism in cardiac physiology and cardiovascular diseases. Here, we show that the circadian transcriptome of the mouse heart exhibits sexual dimorphism. We determined that female hearts express significantly more rhythmically expressed genes (REGs) and that the temporal distribution of the REGs was different between males and females. In addition, the overlap in genes and functional pathways were modest between males and females. All aspects of the sexual dimorphism in the circadian transcriptome was significantly diminished with cardiomyocyte specific loss of the core clock gene, Bmal1. Analysis of all differentially expressed genes (DEGs) between males and females showed that differential expression between sexes was largely diminished with loss of cardiomyocyte Bmal1. We conclude that cardiomyocyte specific Bmal1, and likely the core clock mechanism, plays a vital role in conferring a sexually dimorphic program of gene expression in the adult mouse heart.
Project description:Q fever, a zoonosis due to Coxiella burnetii infection, exhibits sexual dimorphism; men are affected more frequently and severely than women for a given exposure. Here we explore whether the severity of C. burnetii infection in mice is related to differences in male and female gene expression profiles. Mice were infected with C. burnetii for 24 hours, and gene expression was measured in liver cells using microarrays. Multiclass analysis identified 2,777 probes for which expression was specifically modulated by C. burnetti infection. Only 14% of the modulated genes were sex-independent, and the remaining 86% were differentially expressed in males and females. Castration of males and females showed that sex hormones were responsible for more than 60% of the observed gene modulation, and this reduction was most pronounced in males. Using functional annotation of modulated genes, we identified four clusters enriched in males that were related to cell-cell adhesion, signal transduction, defensins and cytokine/Jak-Stat pathways. Up-regulation of the IL-10 and Stat-3 genes may account for the high susceptibility of men with Q fever to C. burnetii infection and autoantibody production. Two clusters were identified in females, including the circadian rhythm pathway, which consists of positive (Clock, Arntl) and negative (Per) limbs of a feedback loop. We found that Clock and Arntl were down-modulated whereas Per was up-regulated; these changes may be associated with efficient bacterial elimination in females but not in males, in which an exacerbated host response would be prominent. This large-scale study revealed for the first time that circadian rhythm plays a major role in the anti-infectious response of mice, and it provides a new basis for elucidating the role of sexual dimorphism in human infections. Liver transcriptome was analyzed using whole genome microarray. Forty mice were divided into 8 groups of five mice upon three binary factors: sex, infection and castration. Four Samples were excluded from final analysis (see Data Processing for additional details).
Project description:Q fever, a zoonosis due to Coxiella burnetii infection, exhibits sexual dimorphism; men are affected more frequently and severely than women for a given exposure. Here we explore whether the severity of C. burnetii infection in mice is related to differences in male and female gene expression profiles. Mice were infected with C. burnetii for 24 hours, and gene expression was measured in liver cells using microarrays. Multiclass analysis identified 2,777 probes for which expression was specifically modulated by C. burnetti infection. Only 14% of the modulated genes were sex-independent, and the remaining 86% were differentially expressed in males and females. Castration of males and females showed that sex hormones were responsible for more than 60% of the observed gene modulation, and this reduction was most pronounced in males. Using functional annotation of modulated genes, we identified four clusters enriched in males that were related to cell-cell adhesion, signal transduction, defensins and cytokine/Jak-Stat pathways. Up-regulation of the IL-10 and Stat-3 genes may account for the high susceptibility of men with Q fever to C. burnetii infection and autoantibody production. Two clusters were identified in females, including the circadian rhythm pathway, which consists of positive (Clock, Arntl) and negative (Per) limbs of a feedback loop. We found that Clock and Arntl were down-modulated whereas Per was up-regulated; these changes may be associated with efficient bacterial elimination in females but not in males, in which an exacerbated host response would be prominent. This large-scale study revealed for the first time that circadian rhythm plays a major role in the anti-infectious response of mice, and it provides a new basis for elucidating the role of sexual dimorphism in human infections.
Project description:The circadian clock regulator Bmal1 modulates tumorigenesis, but its reported effects are often inconsistent. Here, we show that Bmal1 has a context-dependent role in mouse melanoma tumor growth. Loss of Bmal1 in YUMM or B16 melanoma cells eliminated clock function, and diminished hypoxic gene expression signature and tumorigenesis, which could be rescued by ectopic expression of HIF-1a. By contrast, over-expressed wild-type or a dominant negative Bmal1 non-canonically sequestered myosin heavy chain 9 (Myh9) to increase MRTF-SRF activity and AP-1 transcriptional signature, and shift YUMM 2.1 cells from a Sox10high to a Sox9high immune resistant, mesenchymal cell state that is found in human melanomas. Our work uncovers a link between Bmal1, Myh9, mouse melanoma cell plasticity, and tumor immunity. This connection may underlie cancer therapeutic resistance and underpin the link between the circadian clock, MRTF-SRF and the cytoskeleton.
Project description:Circadian clocks are cell autonomous timekeeping mechanisms that govern critical biological processes. Regarding the heart, the cardiomyocyte circadian clock regulates a diverse array of processes, ranging from transcription and translation, to signaling, metabolism, electrophysiology, and contractility. The importance of this mechanism is underscored by observations that genetic disruption of the cardiomyocyte circadian clock in murine models leads to adverse cardiac remodeling, heart failure, and reduced lifespan. However, the precise molecular links between the cardiomyocyte circadian clock and cardiac physiology/pathology have not been characterized fully. Given that recent studies have highlighted that small RNA species (such as miRNAs) influence both cardiac physiology and pathology, we sought to determine the extent to which cardiomyocyte circadian clock disruption impacts cardiac small RNA species. Accordingly, hearts were collected from cardiomyocyte-specific Bmal1 knockout (CBK) and littermate control (CON) mice at distinct times of the day. Small RNA-seq revealed 47 differentially expressed miRNA species in CBK hearts (in the absence of significant time-of-day-dependent effects). Subsequent bioinformatic analyses predicted that differentially expressed miRNA species in CBK hearts potentially influence processes such as circadian rhythmicity, cellular signaling, and metabolism. Of the induced miRNAs in CBK hearts, 7 were predicted to be targeted by the transcriptional repressors REV-ERB/ (integral circadian clock components that are directly regulated by BMAL1). Similar to CBK hearts, cardiomyocyte-specific Rev-erb/ double knockout (CM-RevDKO) mouse hearts exhibited increased let-7c-1-3p, miR-23b-5p, miR-139-3p, miR-5123, and miR-7068-3p levels. Importantly, 19 putative targets of these 5 miRNAs were commonly repressed in both CBK and CM-RevDKO heart (of which 16 are targeted by let-7c-1-3p). These observations suggest that disruption of the BMAL1–REV-ERB/ axis in the heart leads to induction of a subset of miRNAs, whose predicted mRNA targets have established functions in biological processes such as metabolism and cellular signaling.
Project description:Circadian clocks are cell autonomous, transcriptionally-based, molecular mechanisms that confer the selective advantage of anticipation, enabling cells/organs to respond to environmental factors in a temporally appropriate manner. Critical to circadian clock function are two transcription factors, CLOCK and BMAL1. Previous studies in our laboratory have highlighted roles for CLOCK in cardiac physiology/pathophysiology. Here, we describe transcriptional, metabolic, and functional consequences of cardiomyocyte-specific Bmal1 knockout (CBK). Microarray analysis revealed 2037 differentially expressed genes in CBK hearts, many of which were previously identified in cardiomyocyte-specific Clock mutant (CCM) hearts. Subsequent analysis showed that Beta-hydroxybutyrate dehydrogenase 1 mRNA, protein, and enzymatic activity are markedly depressed in both CBK and CCM hearts, as is myocardial Beta-hydroxybutyrate oxidation, revealing a novel role for the circadian clock in ketone body utilization. A number of genes encoding for collagen isoforms were identified as oscillating in a time-of-day-dependent manner in wild-type, but not CBK, hearts, including col3a1, col4a1, and col4a2. Chronic induction of collagen isoform genes in CBK hearts was associated with severe age-dependent depression of cardiac function. Development of cardiomyopathy in CBK mice was associated with early mortality; all CBK mice die by one year of age. These studies highlight novel critical functions for BMAL1 in the heart, including regulation of ketone body metabolism and the extracellular matrix. RNA from whole hearts collected every 3 hours for 24 hours from wildtype and CBK mice was isolated and analyzed using MouseRef-8_V2 BeadChips (Illumina, Inc.). The 24-hour data were examined for rhythmicity using cosinor analysis and differences in rhythmicity between genotype groups were further examined for differences in the model fitting parameters.
Project description:Despite sharing much of their genomes, males and females are often highly dimorphic, reflecting at least in part the resolution of sexual conflict in response to sexually antagonistic selection. Sexual dimorphism arises owing to sex differences in gene expression, and steroid hormones are often invoked as a proximate cause of sexual dimorphism. Experimental elevation of androgens can lead to masculinization of behavior, physiology, and gene expression, but knowledge of the role of hormones remains incomplete, including how the sexes differ in their gene expression in response to exposure to hormones. We addressed these questions in a bird species with a long history of behavioral endocrinological and ecological study, the dark-eyed junco (Junco hyemalis), using a species-specific microarray. Focusing on two brain regions involved in sexually dimorphic behavior and regulation of hormone secretion, we identified 1,639 genes that differed in expression by sex in the ventromedial telencephalon and 768 in hypothalamus. In response to experimentally elevated testosterone, females exhibited a more “male-like” expression pattern than control females; unexpectedly, male expression patterns became more “female-like” rather than hyper-masculinized when compared to control males. This sex difference in pattern arose both because testosterone altered regulation of different genes in each sex and because testosterone altered regulation of the same genes differentially, i.e., up in one sex, down in the other. Hormonally regulated gene expression is a key genetic and physiological mechanism underlying sexual dimorphism, and further study should help to explain how it relates to the resolution of sexual conflict. Hypothalamus: 24 samples were analyzed, all were biological (not technical) replicates. 6 from males treated with testosterone [MT], 6 from control males [MC], 6 from females treated with testosterone [FT], and 6 from control females [FC]. All hybridizations were paired, and all treatment groups were compared, but no sample was analyzed more than once. Ventromedial telencephalon: 24 samples were analyzed, all were biological (not technical) replicates. 6 from males treated with testosterone [MT], 6 from control males [MC], 6 from females treated with testosterone [FT], and 6 from control females [FC]. All hybridizations were paired, and all treatment groups were compared, but no sample was analyzed more than once.
Project description:Circadian rhythm dysfunction is a hallmark of Parkinson Disease (PD), and diminished expression of the core clock gene Bmal1 has been described in PD patients. BMAL1 is required for core circadian clock function, but also serves non-rhythmic functions. Germline Bmal1 deletion can cause brain oxidative stress and synapse loss in mice, and can exacerbate dopaminergic neurodegeneration in response to MPTP. Here we examined the impact of cell type-specific Bmal1 deletion on dopaminergic neuron viability in vivo. We observed that global, post-natal deletion of Bmal1 caused spontaneous loss of tyrosine hydroxylase-positive (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc). This was not due to disruption of behavioral circadian rhythms, and was not induced by astrocyte- or microglia-specific Bmal1 deletion. However, either pan-neuronal or TH neuron-specific Bmal1 deletion caused cell-autonomous loss of TH+ neurons in the SNpc. Finally, global Bmal1 deletion exacerbated TH+ neuron loss following injection of alpha-synclein fibrils. Transcriptomic analysis of neuron-specific Bmal1 KO brain revealed dysregulation of pathways involved in oxidative phosphorylation and Parkinson Disease.
Project description:The mammalian circadian clock is a molecular oscillator composed of a feedback loop that involves transcriptional activators CLOCK and BMAL1, and repressors Cryptochrome (CRY) and Period (PER). Here we show that a direct CLOCK-BMAL1 target gene, Gm129, is a novel regulator of the feedback loop. ChIP analysis revealed that the CLOCK:BMAL1:CRY1 complex strongly occupies the promoter region of Gm129. Both mRNA and protein levels of GM129 exhibit high amplitude circadian oscillations in mouse liver, and Gm129 gene encodes a nuclear-localized protein that directly interacts with BMAL1 and represses CLOCK:BMAL1 activity. In vitro and in vivo protein-DNA interaction results demonstrate that, like CRY1, GM129 functions as a repressor by binding to the CLOCK:BMAL1 complex on DNA. Although Gm129-/- or Cry1-/- Gm129-/- mice retain a robust circadian rhythm, the peaks of Nr1d1 and Dbp mRNAs in liver exhibit significant phase delay compared to control. Our results suggest that, in addition to CRYs and PERs, GM129 protein contributes to the transcriptional feedback loop by modulating CLOCK:BMAL1 activity as a transcriptional repressor. Examination of 3 transcriptional regulators in mouse liver
Project description:The transcription factor BMAL1 is a core element of the circadian clock that contributes to cyclic control of genes transcribed by RNA polymerase II. By using biochemical cellular fractionation and immunofluorescence analyses we reveal a previously uncharacterized nucleolar localization for BMAL1. We used an unbiased approach to determine the BMAL1 interactome by mass spectrometry and identified NOP58 as a prominent nucleolar interactor. NOP58, a core component of the box C/D small nucleolar ribonucleoprotein complex, associates with Snord118 to control specific pre-ribosomal RNA (rRNA) processing steps. These results suggest a non-canonical role of BMAL1 in rRNA regulation. Indeed, we show that BMAL1 controls NOP58-associated Snord118 nucleolar levels and cleavage of unique pre-rRNA intermediates. Our findings identify an unsuspected function of BMAL1 in the nucleolus that appears distinct from its canonical role in the circadian clock system
Project description:Circadian clocks are cell autonomous, transcriptionally-based, molecular mechanisms that confer the selective advantage of anticipation, enabling cells/organs to respond to environmental factors in a temporally appropriate manner. Critical to circadian clock function are two transcription factors, CLOCK and BMAL1. Previous studies in our laboratory have highlighted roles for CLOCK in cardiac physiology/pathophysiology. Here, we describe transcriptional, metabolic, and functional consequences of cardiomyocyte-specific Bmal1 knockout (CBK). Microarray analysis revealed 2037 differentially expressed genes in CBK hearts, many of which were previously identified in cardiomyocyte-specific Clock mutant (CCM) hearts. Subsequent analysis showed that Beta-hydroxybutyrate dehydrogenase 1 mRNA, protein, and enzymatic activity are markedly depressed in both CBK and CCM hearts, as is myocardial Beta-hydroxybutyrate oxidation, revealing a novel role for the circadian clock in ketone body utilization. A number of genes encoding for collagen isoforms were identified as oscillating in a time-of-day-dependent manner in wild-type, but not CBK, hearts, including col3a1, col4a1, and col4a2. Chronic induction of collagen isoform genes in CBK hearts was associated with severe age-dependent depression of cardiac function. Development of cardiomyopathy in CBK mice was associated with early mortality; all CBK mice die by one year of age. These studies highlight novel critical functions for BMAL1 in the heart, including regulation of ketone body metabolism and the extracellular matrix.