CEACAM1-engineered MSCs have a broad spectrum of immunomodulatory functions and therapeutic potential via cell-to-cell interaction
Ontology highlight
ABSTRACT: Mesenchymal stem cells (MSCs) have garnered attention for their regenerative and immunomodulatory capabilities in clinical trials for various diseases. However, the effectiveness of MSC-based therapies, especially for conditions like graft-versus-host disease (GvHD), remains uncertain. The cytokine IFN-γ has been known to enhance the immunosuppressive properties of MSCs through cell-to-cell interactions and soluble factors. In this study, we observed that IFN-γ-treated MSCs upregulated the expression of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), associated with immune evasion through the inhibition of NK cell cytotoxicity. To co-opt this immunomodulatory function, we generated MSCs overexpressing CEACAM1 and found that CEACAM1-engineered MSCs significantly reduced NK cell activation and cytotoxicity, independent of NKG2D ligand regulation. Furthermore, CEACAM1-engineered MSCs effectively inhibited the proliferation and activation of T cells along with the inflammatory responses of monocytes. In a humanized GvHD mouse model, CEACAM1-MSCs, particularly CEACAM1-4S-MSCs, demonstrated therapeutic potential by improving survival and alleviating symptoms. These findings suggest that CEACAM1 expression on MSCs contributes to MSC-mediated regulation of immune responses and that CEACAM1-engineered MSC could have therapeutic potential in conditions involving immune dysregulation.
Project description:Extracellular vesicles (EVs) harvested from conditioned media of human mesenchymal stromal cells (MSCs) suppress acute inflammation in various disease models and promote regeneration of damaged tissues. Following successful treatment of an acute steroid-refractory Graft-versus-Host disease (GvHD) patient with EVs prepared from conditioned media of human bone marrow-derived MSCs, we focus on improving the MSC-EV production for the clinical application. Independent MSC-EV preparations all produced according to a standardized procedure, reveal broad immunomodulatory differences. Only a proportion of our MSC-EV products effectively modulate immune responses in a multi-donor mixed lymphocyte reaction (mdMLR) assay. To explore the relevance of such differences, we have established an optimized mouse GvHD model. The functional testing of selected MSC-EV preparations demonstrate that MSC-EV preparations revealing immunomodulatory capabilities in the mdMLR assay also effectively suppress GvHD symptoms in this model. In contrast, MSC-EV preparations, lacking such in vitro activities, also fail to modulate GvHD symptoms in vivo. Searching for differences of the active and inactive MSC-EV preparations, we failed to identify concrete proteins or miRNAs that could serve as surrogate markers. Thus, standardized MSC-EV production strategies may not be sufficient to warrant manufacturing of MSC-EV products with reproducible qualities. Consequently, given this functional heterogeneity, every individual MSC-EV preparation considered for the clinical application should be evaluated for its therapeutic potency prior to administration to patients. Here, we qualified the mdMLR assay for such analyses.
Project description:Cleft palate results from a mixture of genetic and environmental factors and occurs when the bilateral palatal shelves fail to fuse. The objective of this study was to search for new genes involved in mouse palate formation. Gene expression of murine embryonic palatal tissue was analyzed at the various developmental stages before, during, and after palate fusion using GeneChip? microarrays. Ceacam1 was one of the highly up-regulated genes during and after fusion in palate formation, and this was confirmed by quantitative real-time PCR. Immunohistochemical staining showed that CEACAM1 was expressed at a very low level in palatal epithelium before fusion, but highly expressed in the midline of the palate during and after fusion. To investigate the developmental role of CEACAM1, function-blocking antibody was added to embryonic mouse palate in organ culture. Palatal fusion was inhibited by this function-blocking antibody. To investigate the subsequent developmental role of CEACAM1, we characterized Ceacam1-deficient (Ceacam1-/-) mice. Epithelial cells persisted abnormally at the midline of the embryonic palate even on day E16.0, and palatal fusion was delayed in Ceacam1-/- mice. TGF?3 expression, apoptosis, and cell proliferation in palatal epithelium were not effected in the palate of Ceacam1-/-mice. CEACAM1 expression was down-regulated in Tgfb3-/- palate. However, exogenous TGF?3 did not induce CEACAM1 expression. These results suggest that CEACAM1 has roles in both the initiation of palate formation via epithelial cell adhesion and TGF signaling has some indirect effect on CEACAM1. Global gene expression profiling of palatal processes before, during and after fusion of palatal shelves We used microarray to investigate the gene expression of palatal tissue during palatal development. Palatal processes were microdissected at the stages of palatal development (before, during and after fusion) for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Cleft palate results from a mixture of genetic and environmental factors and occurs when the bilateral palatal shelves fail to fuse. The objective of this study was to search for new genes involved in mouse palate formation. Gene expression of murine embryonic palatal tissue was analyzed at the various developmental stages before, during, and after palate fusion using GeneChip? microarrays. Ceacam1 was one of the highly up-regulated genes during and after fusion in palate formation, and this was confirmed by quantitative real-time PCR. Immunohistochemical staining showed that CEACAM1 was expressed at a very low level in palatal epithelium before fusion, but highly expressed in the midline of the palate during and after fusion. To investigate the developmental role of CEACAM1, function-blocking antibody was added to embryonic mouse palate in organ culture. Palatal fusion was inhibited by this function-blocking antibody. To investigate the subsequent developmental role of CEACAM1, we characterized Ceacam1-deficient (Ceacam1-/-) mice. Epithelial cells persisted abnormally at the midline of the embryonic palate even on day E16.0, and palatal fusion was delayed in Ceacam1-/- mice. TGF?3 expression, apoptosis, and cell proliferation in palatal epithelium were not effected in the palate of Ceacam1-/-mice. CEACAM1 expression was down-regulated in Tgfb3-/- palate. However, exogenous TGF?3 did not induce CEACAM1 expression. These results suggest that CEACAM1 has roles in both the initiation of palate formation via epithelial cell adhesion and TGF signaling has some indirect effect on CEACAM1. Global gene expression profiling of palatal processes before, during and after fusion of palatal shelves We used microarray to investigate the gene expression of palatal tissue during palatal development.
Project description:Mesenchymal stromal cells (MSCs) combined with calcineurin-NFAT (CN-NFAT) inhibitors are being tested as a treatment for graft versus host disease (GvHD). The immunosuppressive properties of MSCs seem beneficial; however, their response during fungal infection, which is an important cause of mortality in GvHD patients, is unknown. We report that MSCs phagocytose the fungal component zymosan, resulting in phosphorylation of Syk kinase, increase in cytosolic calcium levels and ultimately, in NFAT1 nuclear translocation. RNA-sequencing analysis of zymosan-treated MSCs showed that CN-NFAT inhibition affects extracellular matrix (ECM) genes, but not cytokine expression that is under the control of the NF-κB pathway. When co-culturing MSCs or decellularized MSC-ECM with human peripheral blood mononuclear cells (PBMCs), selective NFAT inhibition in MSCs decreased cytokine expression by PBMCs. These findings reveal a dual mechanism underlying the MSC response to zymosan: while NF-κB directly controls inflammatory cytokine expression, NFAT impacts immune-cell functions by regulating ECM remodelling.
Project description:Molecular and functional significance of CREB1-NRF2 pathway on GSH dynamics of MSCs which critically determines therapeutic outcomes for treating allogeneic conflicts, including GvHD. A simple and reliable method to real-time monitor the redox status of MSCs which precisely predict their core functions including self-renewal, migration, and immunomodulatory capacities.
Project description:To identify Ceacam1 downstream factors, we compared gene expressions between NSCs and Ceacam1L-expressing NSC and between NSCL61 and Ceacam1shRNA-expressing NSCL61. We established Ceacam1L-expressing NSC and Ceacam1shRNA-expressing NSCL61s. We think that genes, which are differently expressed between NSC and Ceacam1L-NSC, and between NSCL61 and Ceacam1shRNA-NSCL61, are the Ceacam1 downstream factors.
Project description:The graft-versus-host disease (GVHD) associated dry eye disease usually leads to refractory pain and visual impairment with limited treatments currently. Here we found exosome derived from mesenchymal stromal cell (MSC-exo) administered as eye drops significantly alleviates GVHD-associated dry eye disease in human and mouse models. To find out the essential elements during exosome treatment, we performed miRNA sequencing of exosomes derived from MSCs and L929 cells, and identified miR-204 in MSC-exo benefited the recovery of dry eye, which targeted IL-6/IL-6R/Stat3 signaling. Blockade of miR-204 abolished the therapeutic effect of MSC-exo while miR-204 overexpression from L929-exo markedly attenuates dry eye. Thus MSC-exo eye drops are efficacious in treating GVHD-associated dry eye and highlight miR-204 as a potential therapeutic agent.
Project description:Previous clinical trials have shown that mesenchymal stromal cells (MSCs) can modulate graft versus host disease (GvHD) after allogeneic hematopoietic transplantation, although with variable efficacy. To improve the anti-GvHD effect of these cells, adipose tissue derived-human MSCs (Ad-MSCs) were transduced with a lentiviral vector conferring stable expression of CXCR4, a molecule involved in cell migration to inflamed sites, and IL-10, a cytokine with potent anti-inflammatory properties. In vitro experiments showed that the expression of these molecules in Ad-MSCs (named CXCR4-IL10-MSCs) efficiently enhanced their migration towards SDF‐1α and also improved their immunomodulatory properties compared to unmodified Ad‐MSCs (WT‐MSCs). Moreover, using a humanized GvHD mouse model, CXCR4-IL10-MSCs showed improved therapeutic effects, which were confirmed by histopathologic analysis in the target organs. Additionally, compared to WT-MSCs, CXCR4-IL10-MSCs induced a more marked reduction in the number of pro-inflammatory Th1 and Th17 cells, a higher polarization towards an anti-inflammatory T cell profile (CD3+-IL10+ cells), and increased the number of regulatory T and B cells. Our in vitro and in vivo studies strongly suggest that CXCR4-IL10-MSCs should constitute an important new generation of MSCs for the treatment of GvHD in patients transplanted with allogeneic hematopoietic grafts.