Multiomic Analyses Reveal New Targets of Polycomb Repressor Complex 2 in Schwann Lineage Cells and Malignant Peripheral Nerve Sheath Tumors - Methylation
Ontology highlight
ABSTRACT: Background Malignant peripheral nerve sheath tumors (MPNST) can arise from atypical neurofibromas (ANF). Loss of the polycomb repressor complex 2 (PRC2) is a common event. Previous studies on PRC2-regulated genes in MPNST used genetic addback experiments in highly aneuploid MPNST cell lines which may miss PRC2-regulated genes in NF1-mutant ANF-like precursor cells. A set of PRC2-regulated genes in human Schwann cells has not been defined. We hypothesized PRC2 loss has direct and indirect effects on gene expression resulting in MPNST, so we sought PRC2-regulated genes in immortalized human Schwann cells (iHSCs). Methods We engineered NF1-deficient iHSCs with loss of function SUZ12 or EED mutations. RNA sequencing revealed 1,327 differentially expressed genes to define PRC2-regulated genes. To investigate MPNST pathogenesis we compared genes in iHSCs to consistent gene expression differences between ANF and MPNSTs. Chromatin immunoprecipitation sequencing was used to further define targets. Methylome and proteomic analyses were performed to further identify enriched pathways. Results We identified potential PRC2-regulated drivers of MPNST progression. Pathway analysis indicates many upregulated cancer-related pathways. We found transcriptional evidence for activated Notch and Sonic Hedgehog signaling in PRC2-deficient iHSCs. Functional studies confirm Notch signaling is active in MPNST cell lines, patient derived xenografts, and transient cell models of PRC2 deficiency. A combination of MEK and γ-secretase inhibition shows synergy in MPNST cell lines. Conclusions We report PRC2-regulated genes and potential drivers of MPNSTs. Our findings support the Notch pathway as a druggable target in MPNSTs. Our identification of PRC2-regulated genes and pathways could result in more novel therapeutic approaches.
Project description:Background Malignant peripheral nerve sheath tumors (MPNST) can arise from atypical neurofibromas (ANF). Loss of the polycomb repressor complex 2 (PRC2) is a common event. Previous studies on PRC2-regulated genes in MPNST used genetic addback experiments in highly aneuploid MPNST cell lines which may miss PRC2-regulated genes in NF1-mutant ANF-like precursor cells. A set of PRC2-regulated genes in human Schwann cells has not been defined. We hypothesized PRC2 loss has direct and indirect effects on gene expression resulting in MPNST, so we sought PRC2-regulated genes in immortalized human Schwann cells (iHSCs). Methods We engineered NF1-deficient iHSCs with loss of function SUZ12 or EED mutations. RNA sequencing revealed 1,327 differentially expressed genes to define PRC2-regulated genes. To investigate MPNST pathogenesis we compared genes in iHSCs to consistent gene expression differences between ANF and MPNSTs. Chromatin immunoprecipitation sequencing was used to further define targets. Methylome and proteomic analyses were performed to further identify enriched pathways. Results We identified potential PRC2-regulated drivers of MPNST progression. Pathway analysis indicates many upregulated cancer-related pathways. We found transcriptional evidence for activated Notch and Sonic Hedgehog signaling in PRC2-deficient iHSCs. Functional studies confirm Notch signaling is active in MPNST cell lines, patient derived xenografts, and transient cell models of PRC2 deficiency. A combination of MEK and γ-secretase inhibition shows synergy in MPNST cell lines. Conclusions We report PRC2-regulated genes and potential drivers of MPNSTs. Our findings support the Notch pathway as a druggable target in MPNSTs. Our identification of PRC2-regulated genes and pathways could result in more novel therapeutic approaches.
Project description:Background Malignant peripheral nerve sheath tumors (MPNST) can arise from atypical neurofibromas (ANF). Loss of the polycomb repressor complex 2 (PRC2) is a common event. Previous studies on PRC2-regulated genes in MPNST used genetic addback experiments in highly aneuploid MPNST cell lines which may miss PRC2-regulated genes in NF1-mutant ANF-like precursor cells. A set of PRC2-regulated genes in human Schwann cells has not been defined. We hypothesized PRC2 loss has direct and indirect effects on gene expression resulting in MPNST, so we sought PRC2-regulated genes in immortalized human Schwann cells (iHSCs). Methods We engineered NF1-deficient iHSCs with loss of function SUZ12 or EED mutations. RNA sequencing revealed 1,327 differentially expressed genes to define PRC2-regulated genes. To investigate MPNST pathogenesis we compared genes in iHSCs to consistent gene expression differences between ANF and MPNSTs. Chromatin immunoprecipitation sequencing was used to further define targets. Methylome and proteomic analyses were performed to further identify enriched pathways. Results We identified potential PRC2-regulated drivers of MPNST progression. Pathway analysis indicates many upregulated cancer-related pathways. We found transcriptional evidence for activated Notch and Sonic Hedgehog signaling in PRC2-deficient iHSCs. Functional studies confirm Notch signaling is active in MPNST cell lines, patient derived xenografts, and transient cell models of PRC2 deficiency. A combination of MEK and γ-secretase inhibition shows synergy in MPNST cell lines. Conclusions We report PRC2-regulated genes and potential drivers of MPNSTs. Our findings support the Notch pathway as a druggable target in MPNSTs. Our identification of PRC2-regulated genes and pathways could result in more novel therapeutic approaches.
Project description:Patients with neurofibromatosis type 1 (NF1) develop benign plexiform neurofibromas that frequently progress to become malignant peripheral nerve sheath tumors (MPNSTs). A genetically engineered mouse model that accurately models plexiform neurofibroma-MPNST progression would facilitate the identification of somatic mutations driving this process. We have previously reported that transgenic mice overexpressing the growth factor neuregulin-1 in Schwann cells (P0-GGF?3 mice) develop MPNSTs. To determine whether P0-GGF?3 mice accurately model neurofibroma-MPNST progression, cohorts of these animals were followed to death and necropsied. 94% of the mice developed multiple neurofibromas, with 70% carrying smaller numbers of MPNSTs; nascent MPNSTs were identified within neurofibromas, suggesting that these sarcomas arise from neurofibromas. Although neurofibromin expression was maintained, P0-GGF?3 MPNSTs, like human NF1-associated MPNSTs, demonstrated Ras hyperactivation. P0-GGF?3 MPNSTs also showed abnormalities in the p16INK4A-cyclin D/CDK4-Rb and p19ARF-Mdm-p53 pathways analogous to their human counterparts. Array comparative genomic hybridization (CGH) demonstrated reproducible chromosomal alterations in P0-GGF?3 MPNST cells (including universal chromosome 11 gains) and focal gains and losses affecting 39 genes previously implicated in neoplasia (e.g., Pten, Tpd52, Myc , Gli1, Xiap, Bbc3/PUMA). Array CGH also identified recurrent focal copy number variations affecting genes not previously linked to neurofibroma or MPNST pathogenesis. We conclude that P0-GGF?3 mice represent a robust model of neurofibroma-MPNST progression that can be used to identify novel genes driving neurofibroma and MPNST pathogenesis. Array CGH comparison of malignant peripheral nerve sheath tumor (MPNST) cells vs non-neoplastic Schwann cells
Project description:Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas developed from Schwann cell lineage. They account for up to 10% of all soft tissue sarcomas. Although there is an unmet need for new therapeutic agents for MPNSTs, to date there have been few transcriptomic analyses of this tumor type. We studied FDA approved drugs for MPNST treatment and compared their transcriptomic changes in cell lines before and after treatment. We demonstrated that Fludarabine treated NF1 MPNST cells exhibited altered signaling pathways such as the upregulation of the Wnt/Ca+ pathway and downregulation of the hedgehog and hypoxia signaling pathways in the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) analysis. The combined Colchicine and Fludarabine treatment enhanced the cytotoxicity of sporadic MPNST cells through altered signaling pathways, including increased Wnt/β-catenin pathway and others. The transcriptomic analysis comparing NF1/sporadic MPNST cells and normal Schwann cells indicated that NF1 MPNST cells had more splicing events, fewer single nucleotide variants, and induced RNA expression than sporadic MPNST cells. In summary, we identified a transcriptomic differences between MPNSTs and Schwann cells, between sporadic MPNST cells and NF1 MPNST cells, and between drug treated MPNST cells and vehicle treated cells.
Project description:Plexiform neurofibromas (PN) are benign nerve sheath Schwann cell tumors, common in patients with neurofibromatosis type 1 (NF1), that are characterized by biallelic mutations in the NF1 tumor suppressor gene. Atypical neurofibromas (ANF) show additional frequent loss of CDKN2A/Ink4a/Arf and may be precursor lesions of aggressive malignant peripheral nerve sheath tumors (MPNST). We combined loss of Nf1 in developing
Project description:Patients with neurofibromatosis type 1 (NF1) develop benign plexiform neurofibromas that frequently progress to become malignant peripheral nerve sheath tumors (MPNSTs). A genetically engineered mouse model that accurately models plexiform neurofibroma-MPNST progression would facilitate the identification of somatic mutations driving this process. We have previously reported that transgenic mice overexpressing the growth factor neuregulin-1 in Schwann cells (P0-GGFβ3 mice) develop MPNSTs. To determine whether P0-GGFβ3 mice accurately model neurofibroma-MPNST progression, cohorts of these animals were followed to death and necropsied. 94% of the mice developed multiple neurofibromas, with 70% carrying smaller numbers of MPNSTs; nascent MPNSTs were identified within neurofibromas, suggesting that these sarcomas arise from neurofibromas. Although neurofibromin expression was maintained, P0-GGFβ3 MPNSTs, like human NF1-associated MPNSTs, demonstrated Ras hyperactivation. P0-GGFβ3 MPNSTs also showed abnormalities in the p16INK4A-cyclin D/CDK4-Rb and p19ARF-Mdm-p53 pathways analogous to their human counterparts. Array comparative genomic hybridization (CGH) demonstrated reproducible chromosomal alterations in P0-GGFβ3 MPNST cells (including universal chromosome 11 gains) and focal gains and losses affecting 39 genes previously implicated in neoplasia (e.g., Pten, Tpd52, Myc , Gli1, Xiap, Bbc3/PUMA). Array CGH also identified recurrent focal copy number variations affecting genes not previously linked to neurofibroma or MPNST pathogenesis. We conclude that P0-GGFβ3 mice represent a robust model of neurofibroma-MPNST progression that can be used to identify novel genes driving neurofibroma and MPNST pathogenesis.
Project description:Background: Malignant peripheral nerve sheath tumors (MPNST) are soft-tissue sarcomas that can arise either sporadically or in association with neurofibromatosis type 1 (NF1). These aggressive malignancies confer poor survival, with no effective therapy available. Methods: We generated five patient-derived MPNST orthoxenograft models (three NF1-related and two sporadic) and performed an exhaustive histological and molecular characterization of primary MPNSTs and their corresponding orthoxenografts. Finally, orthoxenografts models were used as an in vivo pre-clinical platform to test several treatment strategies. Results: MPNST orthoxenografts recapitulate the histopathological properties and preserve the genomic and transcriptomic status of their parental primary tumors. Additionally, they mimic distal dissemination properties in mice. Compatible with an origin in a catastrophic event and subsequent stabilization, MPNSTs contained highly altered genomes that remained remarkably stable in orthoxenograft establishment and along passages. Although preliminary, the results presented here point to clear differences between NF1-associated and sporadic MPNSTs. In accordance, mutation frequency in sporadic MPNSTs was an order of magnitude higher than in NF1-associated MPNSTs and unsupervised cluster analysis and principal component analysis (PCA) using a MPNST signature perfectly divided the samples between NF1 and sporadic MPNST. Finally, different therapeutic approaches tested in the validated orthoxenograft MPNST models, reveal that sorafenib, or in combination with doxorubicin or rapamycin caused a great tumor reduction in all models. Conclusion: The development of a well-characterized and standardized preclinical model for MPNSTs has laid the foundations for evaluating novel therapeutic strategies in the clinical setting. Moreover, results obtained strongly support the clinical evaluation of Sorafenib in this subset of patients. Primary MPNSTs were implanted in the sciatic nerve of nude mices to create orthoxenograft MPNST models. Several orthoxenograft passages were created. The primary tumor (when available) and passages 1 and 4 were selected for gene expression profiling to demonstrate that the orthoxenografts closely resemble their primary tumors and are stable along xenograft passages.
Project description:Understanding biological pathways critical for common neurofibromatosis type 1 (NF1) peripheral nerve tumors is essential, as tumor biomarkers, prognostic factors and therapeutics are all lacking. We used gene expression profiling to define transcriptional changes between primary normal Schwann cells (n = 10), NF1-derived primary benign neurofibroma Schwann cells (n = 22), malignant peripheral nerve sheath tumor (MPNST) cell lines (n = 13), benign neurofibromas (n = 26) and MPNST (n = 6). Dermal and plexiform neurofibromas were indistinguishable. A prominent theme in the analysis was aberrant differentiation. Neurofibromas repressed gene programs normally active in Schwann cell precursors and immature Schwann cells. MPNST signatures strongly differed; genes upregulated in the sarcomas were significantly enriched for genes activated in neural crest cells. We validated differential expression of 82 genes including the neural crest transcription factor SOX9 and SOX9 predicted targets. SOX9 immunoreactivity was robust in neurofibroma and MPSNT tissue sections and targeting SOX9 - strongly expressed in NF1-related tumors - caused MPNST cell death. SOX9 is a biomarker of neurofibroma and MPNST, and possibly a therapeutic target in NF1. Keywords: tumor stage 86 microarrays, consisting of 77 samples and 9 batch reference samples: NHSC (10), dNFSC (11), pNFSC (11), MPNST cell lines (13), dNF (13), pNF (13), MPNST (6)
Project description:Neurofibromatosis Type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating effects of hyperactive Ras in NF1 tumors are unknown. Cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs identified global negative feedback of genes that regulate Ras-Raf- MEK- extracellular signal-regulated protein kinase (ERK) signaling in both species. Nonetheless, activation of ERK was sustained in mouse and human neurofibromas and MPNST. PD0325901, a highly selective pharmacological inhibitor of MEK, was used to test whether sustained Ras-Raf-MEK-ERK signaling contributes to neurofibroma growth in the Nf1fl/fl;Dhh-cre mouse model or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in >80% of mice tested. PD0325901 also caused effects on tumor vasculature. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide strong rationale for testing MEK inhibitors in NF1 clinical trials. 83 microarrays: Mouse control (15), Mouse neurofibroma (15), Mouse MPNST (18); Human nerve (3), Human neurofibroma (26), Human MPNST (6) We used the same human tumor samples as in series GSE14038 (dNF, pNF and MPNST). However, instead of referencing gene expression changes to the normal human Schwann cell samples (NHSC) as we did in series GSE14038, we generated three (new) normal nerve samples (samples jan-N1-3) and referenced gene expression changes to those samples. Moreover, the analysis of series GSE14038 evaluated changes in expression between NHSC, benign tumor subtypes (dNF and pNF), and malignant tumors (MPNST), while our present submission evaluated changes between normal nerve, benign tumors (combined dNF and pNF),and malignant tumors (MPNST). The Series supplementary 'merged_data.txt' file contains the data for 9,891 transcripts that were statistically different in at least one of the two species and present in both mouse and human data sets.
Project description:Malignant peripheral nerve sheath tumor (MPNST) is a type of soft tissue sarcoma that occurs in carriers of mutations in the neurofibromatosis type I gene (Nf1) as well as sporadically. Plexiform neurofibromas in NF1 patients have a significant risk of developing into MPNSTs leading to increased morbidity and mortality from this syndrome. Surgery is the primary intervention but it is not always effective due to the tendency of MPNSTs to infiltrate the surrounding tissue or grow in an inoperable location. Neurofibromin, the protein coded by the Nf1 gene, functions as a GTPase activating protein (GAP) whose mutation leads to constitutive activation of RAS and mitogen-activated protein kinase (MAPK) signaling in NF1 patients’ tumors. However, therapeutic targeting of RAS and MAPK have had limited success (Kalamarides, et al., 2012). In this study, we modulated NRAS, MEK1/2 and neurofibromin levels in MPNST cell lines and determined the global gene expression changes that were associated with each experimental condition. Furthermore, gene expression changes due to neurofibromin deficiency but independent of NRAS and MEK1/2 regulation were characterized for the first time in MPNST cell lines. There are total 4 comparison scenarios. Each scenario has two different samples to compare and each sample has three replicates. Comparison 1: ST88-14 cell line versus normal human schwann cell; comparison 2: U0126 treated ST88-14 versus DMSO treat ST88-14 as control; comparison 3: siNRAS treated ST88-14 versus scrambled control treated ST88-14 cell line; comparison 4: siNf1 treated STS26T cell line versus scrambled control RNA treated STS26T cell line.