Glycerophospholipid remodeling is critical for orthoflavivirus infection
Ontology highlight
ABSTRACT: Flavivirus infection is tightly connected to host lipid metabolism. Here, we performed shotgun lipidomics of cells infected with neurotropic Zika, West Nile, and tick-borne encephalitis viruses, as well as dengue and yellow fever virus. Early in infection specific lipids accumulated, e.g., neutral lipids in Zika and some lyso-phospholipids in all infections. Ceramide levels increased following infection with viruses that cause a cytopathic effect. In addition, fatty acid desaturation as well as glycerophospholipid metabolism were significantly altered. Importantly, depletion of enzymes involved in phosphatidylserine metabolism as well as phosphatidylinositol biosynthesis reduced orthoflavivirus titers and cytopathic effects while inhibition of fatty acid monounsaturation only rescued from virus-induced cell death. Interestingly, interfering with ceramide synthesis had opposing effects on virus replication and cytotoxicity depending on the targeted enzyme. Thus, lipid remodeling by orthoflaviviruses includes distinct changes but also common patterns shared by several viruses that are needed for efficient infection and replication.
ORGANISM(S): Homo sapiens
PROVIDER: GSE264306 | GEO | 2024/09/03
REPOSITORIES: GEO
ACCESS DATA