Project description:WT and H2BE-KO primary cortical neurons were isolated from E16.5 mice and culture for 12 days for ATAC-sequencing (n=3 WT biological replicates, 4 KO biological replicates).
Project description:We have identified a replication-independent histone variant, Hist2h2be (referred to herein as H2be), which is expressed exclusively by olfactory chemosensory neurons. Levels of H2BE are heterogeneous among olfactory neurons, but stereotyped according to the identity of the co-expressed olfactory receptor (OR). Gain- and loss-of-function experiments demonstrate that changes in H2be expression affect olfactory function and OR representation in the adult olfactory epithelium. We show that H2BE expression is reduced by sensory activity and that it promotes neuronal cell death, such that inactive olfactory neurons display higher levels of the variant and shorter life spans. Post-translational modifications (PTMs) of H2BE differ from those of the canonical H2B, consistent with a role for H2BE in altering transcription. We propose a physiological function for H2be in modulating olfactory neuron population dynamics to adapt the OR repertoire to the environment. The objective of generating this dataset was to analyze the occupancy of H2BE protein in the vicinity of gene promoters throughout the genome, relative to histone H3, in olfactory sensory neurons within the main olfactory epithelium (MOE). This dataset analyzes the occupancy of FLAG-H2BE protein in the vicinity of gene promoters throughout the genome, relative to histone H3, in olfactory sensory neurons within the main olfactory epithelium (MOE) of Flag-H2be transgenic mice, which express a FLAG-tagged version of H2BE from the H2be promoter. There are 2 replicates for each ChIP (FLAG and H3).