Transcriptomics

Dataset Information

0

Dual targeting of processive transcription for Myc-driven circuitry in medulloblastoma [RNA-seq]


ABSTRACT: Medulloblastoma is the most common malignant brain tumor of childhood. The highest-risk tumors are driven by recurrent Myc amplifications (Myc-MB) and experience poorer outcomes despite intensive multimodal therapy. The Myc transcription factor defines core regulatory circuitry for these tumors and acts to broadly amplify downstream pro-survival transcriptional programs. Therapeutic targeting of Myc directly has proven elusive, but inhibiting transcriptional cofactors may present an indirect means of drugging the oncogenic transcriptional circuitry sustaining Myc-MB. Independent CRISPR-Cas9 screens were pooled to identify conserved dependencies in Myc-MB. We performed chromatin conformation capture (Hi-C) from primary patient Myc-MB samples to map enhancer-promoter interactions. We then treated in vitro and xenograft models with the dual CDK9/7 inhibitor zotiraciclib to evaluate effect on Myc-driven programs and tumor growth. Eight CRISPR-Cas9 screens performed across three independent labs identify CDK9 as a conserved dependency in Myc-MB. Myc-MB cells are susceptible to CDK9 inhibition, which is synergistic with concurrent inhibition of CDK7. The dual CDK9/7 inhibitor zotiraciclib disrupts enhancer-promoter activity in Myc-MB and downregulates Myc-driven transcriptional programs, exerting potent anti-tumor effect.

ORGANISM(S): Homo sapiens

PROVIDER: GSE267469 | GEO | 2024/11/14

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2024-11-14 | GSE267471 | GEO
2024-11-14 | GSE267470 | GEO
2024-12-01 | GSE280973 | GEO
| PRJNA1111545 | ENA
2020-10-13 | GSE145068 | GEO
2020-10-13 | GSE128330 | GEO
2018-06-06 | GSE107405 | GEO
2022-06-05 | GSE205363 | GEO
2019-01-01 | GSE107126 | GEO
2012-11-30 | E-GEOD-42161 | biostudies-arrayexpress