Taurine ameliorates radiation-induced oxidative stress in bone marrow mesenchymal stromal cells and promotes osteogenesis
Ontology highlight
ABSTRACT: Osteoradionecrosis of the jaw (ORNJ) is a severe complication following head and neck radiotherapy that significantly impacts the quality of life of patients. Currently, there is a lack of comprehensive understanding of the microenvironmental factors involved in ORNJ. In this study, we reveal the activation of taurine metabolism in irradiated mandibular stromal cells using scRNA-Seq and demonstrate a decrease in taurine levels in irradiated bone marrow mesenchymal stromal cells (BMSCs) through metabolomics. Compared with unirradiated BMSCs, taurine uptake in irradiated BMSCs increases. Taurine concentrations in the peripheral blood and jaws of irradiated mice are significantly lower than those in unirradiated mice (P = 0.0064 and 0.0249 respectively). Supplementation with taurine promotes osteogenic differentiation, reduces oxidative stress, and decreases DNA damage in irradiated BMSCs. Oral administration of taurine significantly improves the survival rate of irradiated mice and enhances osteogenesis in irradiated jaws. Our study highlights the role of taurine in the recovery from radiation-induced jaw injury, and suggests its potential as a non-invasive therapeutic option for combating ORNJ.
ORGANISM(S): Mus musculus
PROVIDER: GSE269255 | GEO | 2024/11/18
REPOSITORIES: GEO
ACCESS DATA