ABSTRACT: Rotavirus infection is the single most important cause of severe diarrhea in young children worldwide. We used Affymetrix Human U95Av2 high density oligonucleotide arrays to compare gene expression profiles in peripheral blood mononuclear cells (PBMC) of 10 children with acute rotavirus diarrhea and 8 age-matched healthy children. We also examined patterns of gene expression in 5 convalescent-phase PBMC samples from rotavirus patients. For data analysis, we imported .cel files generated by Affymetrix MAS5.0 into Genetraffic 3.1 software (Iobion) and performed robust multi-chip analysis. We considered a gene in patients differentially expressed if its level of expression was at least 1.5-fold higher or lower than the baseline (arithmetic mean) of the corresponding gene in 8 controls and if its pattern of elevated or repressed expression was observed in at least 7 of the 10 patients. Using these criteria, we identified ~1% up- and ~2% down-regulated genes in acute-phase PBMC of patients. Up-regulated genes included those involved in the differentiation, maturation, activation, and survival of B cells, as well as an array of genes with function in inflammatory and antiviral activities. We observed a pattern of repressed expression of a number of genes involved in the various stages of T-cell development and activation. On the basis of these results, we conclude that rotavirus infection induces robust inflammatory response and B-cell activation but represses T-cell response. Keywords: other
Project description:Rotavirus infection is the single most important cause of severe diarrhea in young children worldwide. We used Affymetrix Human U95Av2 high density oligonucleotide arrays to compare gene expression profiles in peripheral blood mononuclear cells (PBMC) of 10 children with acute rotavirus diarrhea and 8 age-matched healthy children. We also examined patterns of gene expression in 5 convalescent-phase PBMC samples from rotavirus patients. For data analysis, we imported .cel files generated by Affymetrix MAS5.0 into Genetraffic 3.1 software (Iobion) and performed robust multi-chip analysis. We considered a gene in patients differentially expressed if its level of expression was at least 1.5-fold higher or lower than the baseline (arithmetic mean) of the corresponding gene in 8 controls and if its pattern of elevated or repressed expression was observed in at least 7 of the 10 patients. Using these criteria, we identified ~1% up- and ~2% down-regulated genes in acute-phase PBMC of patients. Up-regulated genes included those involved in the differentiation, maturation, activation, and survival of B cells, as well as an array of genes with function in inflammatory and antiviral activities. We observed a pattern of repressed expression of a number of genes involved in the various stages of T-cell development and activation. On the basis of these results, we conclude that rotavirus infection induces robust inflammatory response and B-cell activation but represses T-cell response.
Project description:Rotaviruses are recognized as the leading cause of severe dehydrating diarrhea in infants and young children worldwide. Preventive and therapeutic strategies are urgently needed to fight this pathogen. In tissue culture and in vivo, rotavirus induces structural and functional alterations in the host cell. In order to better understand the molecular mechanisms involved in the events after rotavirus infection, we identified host cellular genes whose mRNA levels changed after infection. For this analysis, we used microarrays containing more than 38,000 human cDNAs to study the transcriptional response of the human intestinal cell line Caco-2 to rotavirus infection. We found that 508 genes were differentially regulated >2-fold at 16 h after rotavirus infection, and only one gene was similarly regulated at 1 h postinfection. Of these transcriptional changes, 73% corresponded to the upregulation of genes, with the majority of them occurring late, at 12 or more hours postinfection. Some of the regulated genes were classified according to known biological function and included genes encoding integral membrane proteins, interferon-regulated genes, transcriptional and translational regulators, and calcium metabolism-related genes. A new picture of global transcriptional regulation in the infected cell is presented and families of genes which may be involved in viral pathogenesis are discussed. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Computed
Project description:Rotaviruses are recognized as the leading cause of severe dehydrating diarrhea in infants and young children worldwide. Preventive and therapeutic strategies are urgently needed to fight this pathogen. In tissue culture and in vivo, rotavirus induces structural and functional alterations in the host cell. In order to better understand the molecular mechanisms involved in the events after rotavirus infection, we identified host cellular genes whose mRNA levels changed after infection. For this analysis, we used microarrays containing more than 38,000 human cDNAs to study the transcriptional response of the human intestinal cell line Caco-2 to rotavirus infection. We found that 508 genes were differentially regulated >2-fold at 16 h after rotavirus infection, and only one gene was similarly regulated at 1 h postinfection. Of these transcriptional changes, 73% corresponded to the upregulation of genes, with the majority of them occurring late, at 12 or more hours postinfection. Some of the regulated genes were classified according to known biological function and included genes encoding integral membrane proteins, interferon-regulated genes, transcriptional and translational regulators, and calcium metabolism-related genes. A new picture of global transcriptional regulation in the infected cell is presented and families of genes which may be involved in viral pathogenesis are discussed. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
Project description:Diarrhea remains a major cause of death in children. Current diagnostic methods largely rely on stool culture and suffer from low sensitivity and inadequate specificity, often leading to inappropriate treatment. The objective of the present study was to use RNA sequencing (RNAseq) analysis to determine blood transcriptional profiles specific for several common pathogenic bacteria and viruses that cause diarrhea in children. We collected whole blood samples from children in Mexico having diarrhea associated with a single pathogen and without systemic complications. Our RNAseq data suggested that the blood signatures can differentiate children with diarrhea from healthy children either with or without bacterial colonization. Moreover, we detected different expression profiles from bacterial and viral infection, demonstrating for the first time the use of RNAseq to identify the etiology of infectious diarrhea. Whole blood from 207 children including children with diarrhea caused by rotavirus (n=55), E.coli (n=55), Salmonella (n=36), Shigella (n=37) and control children (n=24).
Project description:Biliary atresia (BA) is an devastating pediatric cholangiopathy and the leading indication for liver transplant in children worldwide. An in vitro cell system for investigating BA is still lacking. We develop an in vitro cell culture system to mimic immune dysfunction of biliary atresia by coculturing human peripheral blood mononuclear cells (PBMC) with rotavirus treated or PBS treated human cholangiocyte cell line H69. Single cell RNA sequencing analysis of PBMC after coculture was applied to validate the efficacy and fidelity of cell system.
Project description:The differences of clinical characteristics in complex seizures induced by influenza A(H1N1)pdm09 and rotavirus gastroenteritis are well known, but the pathogenic mechanisms remain unclear. We analyzed the gene expression profiles in the peripheral whole blood cells isolated from pediatric patients using an Affymetrix oligonucleotide microarray. Results provide insights into the difference of the pathogenesis in the patients with complex seizures induced by influenza A(H1N1)pdm09 and rotavirus infections. The gene expression profiles in the peripheral whole blood of ten patients (n=5; complex seizures, n=5; control) with influenza A(H1N1)pdm09 and six patients (n=3; complex seizures, n=3; control) with rotavirus gastroenteritis were examined. Whole blood samples were collected from patients in the acute phase of the disease and in the recovery phase.
Project description:The differences of clinical characteristics in complex seizures induced by influenza A(H1N1)pdm09 and rotavirus gastroenteritis are well known, but the pathogenic mechanisms remain unclear. We analyzed the gene expression profiles in the peripheral whole blood cells isolated from pediatric patients using an Affymetrix oligonucleotide microarray. Results provide insights into the difference of the pathogenesis in the patients with complex seizures induced by influenza A(H1N1)pdm09 and rotavirus infections.
Project description:Gut microbiota composition and metabolite alterations in children with diarrhoea due to rotavirus and non-rotavirus infections from Gabon