Proteomics

Dataset Information

0

An antibody leukocyte capture microarray in diagnosis of Systemic Lupus Erythematosus


ABSTRACT: The diagnosis of Systemic Lupus Erythematosus (SLE) is challenging due to its heterogeneous clinical presentation and lack of robust biomarkers for laboratory testing to distinguish it from other autoimmune or infectious diseases. Current diagnostic criterion relies on a combination of clinical examination and laboratory tests, and it does not readily distinguish between those with active clinical disease from those that are clinically quiescent. Several groups have attempted to apply emerging high throughput profiling technologies to diagnose SLE. Despite showing promising diagnostic potential, many of them are expensive and technically challenging for routine clinical uses. Here we report a pilot study of applying a technically simple and highly customisable leukocyte capture antibody microarray to profile healthy (n=24) and SLE patients (n=60) of various disease activities. Our analysis reveals a set of surface antigen biomarkers that have significant association with SLE. In addition, we present a computational method to calculate a score from the entire microarray profile to obtain a score that correlate most reliably with SLE disease activity. Although the current version of our microarray alone does not match the discriminatory power of the standard laboratory tests (serum dsDNA, complements C3 and C4), the combination of the two yields a test with significantly increased discriminatory ability than what can be achieved individually. This work paves the way for a customised SLE-specific antibody microarray for accurate diagnosis and monitoring of SLE that can be readily translated to routine clinical use.

ORGANISM(S): Homo sapiens

PROVIDER: GSE27293 | GEO | 2013/02/21

SECONDARY ACCESSION(S): PRJNA137343

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2013-02-21 | E-GEOD-27293 | biostudies-arrayexpress
2014-04-01 | E-GEOD-49454 | biostudies-arrayexpress
2016-03-31 | GSE65391 | GEO
2008-10-01 | E-GEOD-11909 | biostudies-arrayexpress
2020-03-21 | GSE96879 | GEO
2009-04-13 | GSE11375 | GEO
2022-11-07 | GSE217273 | GEO
2013-06-12 | E-GEOD-47811 | biostudies-arrayexpress
2018-02-28 | GSE99967 | GEO
2010-05-24 | GSE21318 | GEO