Other

Dataset Information

0

Thrombopoietin mimetic reduces mouse lung inflammation and fibrosis after radiation by attenuating activated endothelial phenotypes


ABSTRACT: Radiation-induced lung injury (RILI) initiates radiation pneumonitis and progresses to fibrosis as the main side effect of lung cancer patients treated with radiotherapy. There is no effective drug for RILI. Sustained vascular activation is a major contributor to the establishment of chronic disease. Here, using a whole thoracic irradiation (WTI) mouse model, we investigated the mechanisms and effectiveness of thrombopoietin mimetic (TPOm) for preventing RILI. We demonstrated that administering TPOm 24 hours before irradiation decreased histologic lung injury score, apoptosis, vascular permeability, expression of pro-inflammatory cytokines, and neutrophil infiltration in the lung of mice 2 weeks after WTI. We described the expression of c-MPL, a TPO receptor, in mouse primary pulmonary microvascular endothelial cells, showing TPOm reduced endothelial cell-neutrophil adhesion by inhibiting ICAM-1 expression. Seven months after WTI, TPOm-treated lung exhibited less collagen deposition, expression of MMP-9, TIMP-1, IL-6, TGF-b, and p21. Moreover, TPOm improved lung vascular structure, lung density, and respiration rate, leading to a prolonged survival time after WTI. Single-cell RNA sequencing analysis of lungs 2 weeks after WTI revealed that TPOm shifted populations of capillary endothelial cells towards a less activated and more homeostatic phenotype. Taken together, TPOm is protective for RILI by inhibiting endothelial cell activation.

ORGANISM(S): Mus musculus

PROVIDER: GSE273235 | GEO | 2024/08/01

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2009-03-07 | E-GEOD-14431 | biostudies-arrayexpress
2010-11-17 | E-GEOD-25295 | biostudies-arrayexpress
2009-03-02 | GSE14431 | GEO
2010-11-17 | GSE25295 | GEO
2021-05-11 | GSE174196 | GEO
2023-09-13 | GSE242706 | GEO
2023-09-11 | GSE242840 | GEO
2023-03-20 | GSE211713 | GEO
| PRJNA1140648 | ENA
2023-12-31 | GSE166340 | GEO