Metabolic control of adult neural stem cell activity by FASN-dependent lipogenesis
Ontology highlight
ABSTRACT: Mechanisms controlling the proliferative activity of neural stem/progenitor cells (NSPCs) play a pivotal role to ensure life-long neurogenesis in the mammalian brain. How metabolic programs are coupled with NSPC activity remains unknown. Here we show that fatty acid synthase (FASN), the key enzyme of de novo lipogenesis, is highly active in adult NSPCs and that conditional deletion of FASN in NSPCs impairs adult neurogenesis. The rate of de novo lipid synthesis and subsequent proliferation of NSPCs is regulated by Spot14, a gene we found to be selectively expressed in low proliferating adult NSPCs. Spot14 reduces the availability of malonyl-CoA, which is an essential substrate for FASN to fuel lipogenesis. Thus, we here identified a functional coupling between the regulation of lipid metabolism and adult NSPC proliferation.
ORGANISM(S): Mus musculus
PROVIDER: GSE27391 | GEO | 2012/11/02
SECONDARY ACCESSION(S): PRJNA137007
REPOSITORIES: GEO
ACCESS DATA