Primary Aldosteronism: Spatial Multiomics Mapping of Genotype-Dependent Heterogeneity and Tumor Expansion of Aldosterone-Producing Adenomas
Ontology highlight
ABSTRACT: Primary aldosteronism is frequently caused by an adrenocortical aldosterone-producing adenoma (APA) carrying a somatic mutation that drives aldosterone overproduction. APAs with a mutation in KCNJ5 (APA-KCNJ5MUT) are characterized by heterogeneous CYP11B2 (aldosterone synthase) expression, a particular cellular composition and larger tumor diameter than those with wild-type KCNJ5 (APA-KCNJ5WT). Here, we used spatial transcriptomics profiling of adrenal tissue cryosections to define the role of transcriptomic reprogramming in APA pathophysiology. Our findings advance the understanding of the transcriptional context of inter- and intra-tumoral APA heterogeneity and provide novel insight into the genotype-dependent tumor expansion capabilities of APAs.
Project description:Analysis of aldosterone-producing adenoma (APA) samples from patients with primary hyperaldosteronism. These APAs have a somatic mutation in either KCNJ5, CACNA1D, or ATP1A1. Results provide insight into the different mechanisms each mutation may cause leading to elevated aldosterone production in APA. In this dataset, we include expression data from aldosterone-producing adenomas (APAs) with a somatic mutation in either KCNJ5, CACNA1D, or ATP1A1. These data are used to obtain differentially expressed genes between KCNJ5 mutant APAs and CACNA1D/ATP1A1 mutant APAs. A total of 13 samples were analyzed (8 KCNJ5 mutant APAs and 5 CACNA1D/ATP1A1 mutant APAs). 43 genes had a false discovery rate (FDR) <0.5% and were >2-fold different between KCNJ5 mutant APAs and 5 CACNA1D/ATP1A1 mutant APAs. The two sets of genotypes were separated on unsupervised hierarchical clustering of 1475 genes correlating >0.6 with CYP11B2.
Project description:Analysis of aldosterone-producing adenoma (APA) samples from patients with primary hyperaldosteronism. These APAs have a somatic mutation in either KCNJ5, CACNA1D, or ATP1A1. Results provide insight into the different mechanisms each mutation may cause leading to elevated aldosterone production in APA. In this dataset, we include expression data from aldosterone-producing adenomas (APAs) with a somatic mutation in either KCNJ5, CACNA1D, or ATP1A1. These data are used to obtain differentially expressed genes between KCNJ5 mutant APAs and CACNA1D/ATP1A1 mutant APAs.
Project description:Primary aldosteronism (PA), the most common form of endocrine hypertension, is characterized by inappropriately elevated aldosterone production via renin-independent mechanisms. Driver somatic mutations for aldosterone excess have been found in approximately 90% of aldosterone-producing adenomas (APAs) using an aldosterone synthase (CYP11B2)-guided sequencing approach. Herein, using CYP11B2-guided whole-exome sequencing (WES) and targeted amplicon sequencing, we detected two closely-stationed somatic variants in SLC30A1 in five APAs (p.L51_A57del, n=3; p.L49_L55del, n=2) that were devoid of any of the known aldosterone-driver mutations. SLC30A1 encodes the ubiquitous zinc efflux transporter ZnT1 (zinc transporter 1). PA cases with SLC30A1 mutations showed male dominance and demonstrated increased serum aldosterone concentration compared with age-matched male controls. We tested functional effects of the variant SLC30A1L51_A57del in a doxycycline-inducible system using the human adrenocortical HAC15 cell line. Functional in vitro studies following doxycycline treatment indicated increased adrenal cell aldosterone production, CYP11B2 mRNA expression, CYP11B2 promoter activity, depolarization of the resting membrane potential and increased cytosolic Ca2+ levels in the SLC30A1L51_A57del cells. Collectively, these data support a pathological role for mutant SLC30A1 on the development of PA.
Project description:Background. Primary aldosteronism is the most common form of secondary hypertension. The most frequent genetic cause of aldosterone producing adenoma (APA) are somatic mutations in the potassium channel KCNJ5. They affect the ion selectivity of the channel, with sodium influx leading to cell membrane depolarization and activation of calcium signalling, the major trigger for aldosterone biosynthesis. Methods. To investigate how KCNJ5 mutations lead to the development of APA, we established an adrenocortical cell model in which sodium entry into the cells can be modulated “on demand” using chemogenetic tools (H295R-S2 α7-5HT3 cells). We investigated their functional and molecular characteristics with regard to aldosterone biosynthesis and cell proliferation. Results. A clonal cell line with stable expression of the chimeric α7-5HT3 receptor in H295R-S2 cells was obtained. Increased sodium entry through the α7-5HT3 receptor upon stimulation with uPSEM-817 led to cell membrane depolarization, opening of voltage-gated Ca2+ channels and increased intracellular Ca2+ concentrations, resulting in the stimulation of CYP11B2 expression and increased aldosterone biosynthesis. Increased intracellular sodium influx did not increase proliferation, but rather induced apoptosis. RNA sequencing and steroidome analyses revealed unique profiles associated with Na+ entry, with only partial overlap with angiotensin II or potassium induced changes. Conclusion. H295R-S2 α7-5HT3 cells are a new model reproducing the major features of cells harbouring KCNJ5 mutations. Increased expression of CYP11B2 and stimulation of the mineralocorticoid biosynthesis pathway are associated with a decrease of cell proliferation and an increase of apoptosis, indicating that additional events may be required for the development of APA.
Project description:The pathophysiology of aldosterone-producing adenomas (APAs) has been investigated via genetic approaches and the pathogenic significance of a series of somatic mutations, including KCNJ5, has been uncovered. However, how the mutational status of an APA is associated with its molecular characteristics, including its transcriptome and methylome, has not been fully understood. This study was undertaken to explore the molecular characteristics of APAs, specifically focusing on APAs with KCNJ5 mutations as opposed to those without KCNJ5 mutations, by comparing their transcriptome and methylome status. Cortisol-producing adenomas (CPAs) were used as reference. We conducted transcriptome and methylome analyses of 29 APAs with KCNJ5 mutations, 8 APAs without KCNJ5 mutations and 5 CPAs. Genome-wide gene expression and CpG methylation profiles were obtained from RNA and DNA samples extracted from these 42 adrenal tumors. Cluster analysis of the transcriptome and methylome revealed molecular heterogeneity in APAs depending on their mutational status. DNA hypomethylation and gene expression changes in Wnt signaling and inflammatory response pathways were characteristic of APAs with KCNJ5 mutations. Comparisons between transcriptome data from our APAs and that from normal adrenal cortex obtained from the Gene Expression Omnibus suggested similarities between APAs with KCNJ5 mutations and zona glomerulosa. The present study, which is based on transcriptome and methylome analyses, indicates the molecular heterogeneity of APAs depends on their mutational status. Here, we report the unique characteristics of APAs with KCNJ5 mutations.
Project description:Primary aldosteronism (PA) is the most common endocrine hypertension comprising 10% of hypertensive patients. A recent series of transcriptome analyses using DNA microarray has shown that neumerous genes are differentially expressed between aldosterone-producing adenoma (APA) and its adjacent adrenal gland (AAG) tissue from the same patient. However, the molecular mechanism(s) of pathogenesis of APA has not yet been fully clarified. Although growing body of evidence has shown that epigenetic abnormalities including DNA methylation play a key role in tumorigenesis, there are few studies with regard to DNA methylation in APA. In the present study, to elucidate the pathogenic relationship between gene expression and DNA methylation in PA, we conducted an integrated analysis of transcriptome and methylome data for paired APA-AAG samples from the same patient. Adrenal specimens were obtained from 7 Japanese patients with APA, who underwent adrenalectomy at Tokyo Medical and Dental University. RNA and DNA samples were extracted from those 7 paired APA and AAG tissues. Gene expression and genome-wide DNA methylation profiles were obtained using SurePrint G3 Human GE 8x60K Microarray (Agilent) and Infinium HumanMethylation450 Beadchip (Illumina), respectively. Transcriptome anlaysis identified 244 significantly (2 fold<) upregulated genes in APA compared to AAG. The upregulated genes include the previously studied genes such as PCP4, ALDH1A2, and CYP11B2, and other genes that have not been previously studied, such as HOXA9, HOXA11, and HOXB9. Gene ontology (GO) analysis for these upregulated genes identified the calcium signaling pathway to be most significantly enriched with the upregulated genes (8 genes). Methylome analysis revealed that APA was globally hypomethylated compared to AAG regardless of gene feature groups, namely, TSS1500, TSS200, 5’UTR, 1stExon, gene body, and 3’UTR. GO analysis for the genes showing hypomethylation at TSS1500/TSS200 regions in APA identified the term “cytokine-cytokine receptor interaction” to be most significantly enriched with hypomethylated genes (37 genes). Integrated analysis of gene expression and genome-wide DNA methylation profiles identified 18 genes that are upregulated and whose TSS1500/TSS200 regions are hypomethylated in APA compared to AAG. These genes include CYP11B2 and MC2R (ACTH receptor). In conclusion, this is the first genome-wide study for PA that integrated transcriptome and methylome data. Global DNA hypomethylation in APA and concordant transcriptional up-regulation of some key genes, such as CYP11B2 and MC2R, may play crucial roles in the pathophysiological significance in PA. Adrenal specimens were obtained from 7 Japanese patients with APA, who underwent adrenalectomy at Tokyo Medical and Dental University. RNA and DNA samples were extracted from those 7 paired APA and AAG tissues. Gene expression and genome-wide DNA methylation profiles were obtained using SurePrint G3 Human GE 8x60K Microarray (Agilent) and Infinium HumanMethylation450 Beadchip (Illumina), respectively.
Project description:Primary aldosteronism (PA) is the most common endocrine hypertension comprising 10% of hypertensive patients. A recent series of transcriptome analyses using DNA microarray has shown that neumerous genes are differentially expressed between aldosterone-producing adenoma (APA) and its adjacent adrenal gland (AAG) tissue from the same patient. However, the molecular mechanism(s) of pathogenesis of APA has not yet been fully clarified. Although growing body of evidence has shown that epigenetic abnormalities including DNA methylation play a key role in tumorigenesis, there are few studies with regard to DNA methylation in APA. In the present study, to elucidate the pathogenic relationship between gene expression and DNA methylation in PA, we conducted an integrated analysis of transcriptome and methylome data for paired APA-AAG samples from the same patient. Adrenal specimens were obtained from 7 Japanese patients with APA, who underwent adrenalectomy at Tokyo Medical and Dental University. RNA and DNA samples were extracted from those 7 paired APA and AAG tissues. Gene expression and genome-wide DNA methylation profiles were obtained using SurePrint G3 Human GE 8x60K Microarray (Agilent) and Infinium HumanMethylation450 Beadchip (Illumina), respectively. Transcriptome anlaysis identified 244 significantly (2 fold<) upregulated genes in APA compared to AAG. The upregulated genes include the previously studied genes such as PCP4, ALDH1A2, and CYP11B2, and other genes that have not been previously studied, such as HOXA9, HOXA11, and HOXB9. Gene ontology (GO) analysis for these upregulated genes identified the calcium signaling pathway to be most significantly enriched with the upregulated genes (8 genes). Methylome analysis revealed that APA was globally hypomethylated compared to AAG regardless of gene feature groups, namely, TSS1500, TSS200, 5’UTR, 1stExon, gene body, and 3’UTR. GO analysis for the genes showing hypomethylation at TSS1500/TSS200 regions in APA identified the term “cytokine-cytokine receptor interaction” to be most significantly enriched with hypomethylated genes (37 genes). Integrated analysis of gene expression and genome-wide DNA methylation profiles identified 18 genes that are upregulated and whose TSS1500/TSS200 regions are hypomethylated in APA compared to AAG. These genes include CYP11B2 and MC2R (ACTH receptor). In conclusion, this is the first genome-wide study for PA that integrated transcriptome and methylome data. Global DNA hypomethylation in APA and concordant transcriptional up-regulation of some key genes, such as CYP11B2 and MC2R, may play crucial roles in the pathophysiological significance in PA. Adrenal specimens were obtained from 7 Japanese patients with APA, who underwent adrenalectomy at Tokyo Medical and Dental University. RNA and DNA samples were extracted from those 7 paired APA and AAG tissues. Gene expression and genome-wide DNA methylation profiles were obtained using SurePrint G3 Human GE 8x60K Microarray (Agilent) and Infinium HumanMethylation450 Beadchip (Illumina), respectively.
Project description:Recent advances in omics techniques have allowed detailed genetic characterization of aldosterone-producing adenoma (APA). The pathogenesis of APA is characterized by tumorigenesis-associated aldosterone synthesis. The pathophysiological intricacies of APAs have not yet been elucidated at the level of individual cells . Therefore, a single-cell level analysis is speculated to be valuable in studying the differentiation process of APA. We conducted single-nuclei RNA sequencing (snRNA-seq) of APAs and non-functional adenomas (NFA) obtained from three and two patients, respectively.The snRNA-seq revealed the intratumoral heterogeneity of APA and identified cell populations consisting of a shared cluster of NFA and APA. In addition, we extracted two cell differentiation pathways in APA and obtained a cell population specialized in aldosterone synthesis. Genes related to ribosomes and neurodegenerative diseases were upregulated in one of these pathways, whereas those related to the regulation of actin cytoskeleton were upregulated in the other pathway. Furthermore, the total RNA reads in the nucleus were higher in highly differentiated clusters, indicating a marked activation of transcription per cell. The snRNA-seq provides novel differentiation pathways within APA tumors, which will further support our understanding of its pathophysiology including endocrine function and tumorigenesis.
Project description:Primary aldosteronism (PA) is the most common endocrine hypertension comprising 10% of hypertensive patients. A recent series of transcriptome analyses using DNA microarray has shown that neumerous genes are differentially expressed between aldosterone-producing adenoma (APA) and its adjacent adrenal gland (AAG) tissue from the same patient. However, the molecular mechanism(s) of pathogenesis of APA has not yet been fully clarified. Although growing body of evidence has shown that epigenetic abnormalities including DNA methylation play a key role in tumorigenesis, there are few studies with regard to DNA methylation in APA. In the present study, to elucidate the pathogenic relationship between gene expression and DNA methylation in PA, we conducted an integrated analysis of transcriptome and methylome data for paired APA-AAG samples from the same patient. Adrenal specimens were obtained from 7 Japanese patients with APA, who underwent adrenalectomy at Tokyo Medical and Dental University. RNA and DNA samples were extracted from those 7 paired APA and AAG tissues. Gene expression and genome-wide DNA methylation profiles were obtained using SurePrint G3 Human GE 8x60K Microarray (Agilent) and Infinium HumanMethylation450 Beadchip (Illumina), respectively. Transcriptome anlaysis identified 244 significantly (2 fold<) upregulated genes in APA compared to AAG. The upregulated genes include the previously studied genes such as PCP4, ALDH1A2, and CYP11B2, and other genes that have not been previously studied, such as HOXA9, HOXA11, and HOXB9. Gene ontology (GO) analysis for these upregulated genes identified the calcium signaling pathway to be most significantly enriched with the upregulated genes (8 genes). Methylome analysis revealed that APA was globally hypomethylated compared to AAG regardless of gene feature groups, namely, TSS1500, TSS200, 5’UTR, 1stExon, gene body, and 3’UTR. GO analysis for the genes showing hypomethylation at TSS1500/TSS200 regions in APA identified the term “cytokine-cytokine receptor interaction” to be most significantly enriched with hypomethylated genes (37 genes). Integrated analysis of gene expression and genome-wide DNA methylation profiles identified 18 genes that are upregulated and whose TSS1500/TSS200 regions are hypomethylated in APA compared to AAG. These genes include CYP11B2 and MC2R (ACTH receptor). In conclusion, this is the first genome-wide study for PA that integrated transcriptome and methylome data. Global DNA hypomethylation in APA and concordant transcriptional up-regulation of some key genes, such as CYP11B2 and MC2R, may play crucial roles in the pathophysiological significance in PA.
Project description:Primary aldosteronism (PA) is the most common endocrine hypertension comprising 10% of hypertensive patients. A recent series of transcriptome analyses using DNA microarray has shown that neumerous genes are differentially expressed between aldosterone-producing adenoma (APA) and its adjacent adrenal gland (AAG) tissue from the same patient. However, the molecular mechanism(s) of pathogenesis of APA has not yet been fully clarified. Although growing body of evidence has shown that epigenetic abnormalities including DNA methylation play a key role in tumorigenesis, there are few studies with regard to DNA methylation in APA. In the present study, to elucidate the pathogenic relationship between gene expression and DNA methylation in PA, we conducted an integrated analysis of transcriptome and methylome data for paired APA-AAG samples from the same patient. Adrenal specimens were obtained from 7 Japanese patients with APA, who underwent adrenalectomy at Tokyo Medical and Dental University. RNA and DNA samples were extracted from those 7 paired APA and AAG tissues. Gene expression and genome-wide DNA methylation profiles were obtained using SurePrint G3 Human GE 8x60K Microarray (Agilent) and Infinium HumanMethylation450 Beadchip (Illumina), respectively. Transcriptome anlaysis identified 244 significantly (2 fold<) upregulated genes in APA compared to AAG. The upregulated genes include the previously studied genes such as PCP4, ALDH1A2, and CYP11B2, and other genes that have not been previously studied, such as HOXA9, HOXA11, and HOXB9. Gene ontology (GO) analysis for these upregulated genes identified the calcium signaling pathway to be most significantly enriched with the upregulated genes (8 genes). Methylome analysis revealed that APA was globally hypomethylated compared to AAG regardless of gene feature groups, namely, TSS1500, TSS200, 5’UTR, 1stExon, gene body, and 3’UTR. GO analysis for the genes showing hypomethylation at TSS1500/TSS200 regions in APA identified the term “cytokine-cytokine receptor interaction” to be most significantly enriched with hypomethylated genes (37 genes). Integrated analysis of gene expression and genome-wide DNA methylation profiles identified 18 genes that are upregulated and whose TSS1500/TSS200 regions are hypomethylated in APA compared to AAG. These genes include CYP11B2 and MC2R (ACTH receptor). In conclusion, this is the first genome-wide study for PA that integrated transcriptome and methylome data. Global DNA hypomethylation in APA and concordant transcriptional up-regulation of some key genes, such as CYP11B2 and MC2R, may play crucial roles in the pathophysiological significance in PA.