Systems analysis of miR-199a/b-5p and multiple miR-199a/b-5p targets during chondrogenesis
Ontology highlight
ABSTRACT: Changes in chondrocyte gene expression can contribute to the development of osteoarthritis (OA), and so recognition of the regulative processes during chondrogenesis can lead to a better understanding of OA. microRNAs (miRNAs) are key regulators of gene expression in chondrocytes/OA and we have used a combined experimental, bioinformatic, and systems biology approach to explore the multiple miRNA-mRNA interactions that regulate chondrogenesis. A longitudinal chondrogenesis bioinformatic analysis identified paralogues miR-199a-5p and miR-199b-5p as pro-chondrogenic regulators. Experimental work demonstrated alteration of miR-199a-5p or miR-199b-5p expression led to significant inverse modulation of key chondrogenic genes and extracellular matrix production. miR-199a/b-5p targetsFZD6, ITGA3andCAV1were identified by inhibition experiments and verified as direct targets by luciferase assay. The experimental work was used to generate and parameterize a multi-miRNA 14-day chondrogenesis kinetic model to be used as a repository for the experimental work and as a resource for further investigation of this system. This is the first multi-miRNA model of a chondrogenesis-based system, and highlights the complex relationships between regulatory miRNAs, and their target mRNAs.
ORGANISM(S): Homo sapiens
PROVIDER: GSE274379 | GEO | 2024/08/09
REPOSITORIES: GEO
ACCESS DATA