Feedback regulation between ALKBH3-mediated glycolysis and histone lactylation promotes age-related macular degeneration
Ontology highlight
ABSTRACT: Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly. Using clinical samples and knockout mice, we reported that the m1A eraser ALKBH3 reshaped retinal metabolism to promote AMD. In retinal pigment epithelium (RPE), the dm1ACRISPR system demonstrated that ALKBH3 demethylated the glycolytic enzyme HK2 to activate anaerobic glycolysis, producing excessive lactate. The lactate promoted histone lactylation at H3K18, which in turn bound to ALKBH3 to amplify its transcription, establishing a positive feedback loop. The ALKBH3 inhibitor HUHS015 disrupted this loop, effectively mitigating RPE degeneration. Furthermore, ALKBH3 directly targeted the pro-angiogenic factor VEGFA to modulate the metabolic cross-talk between RPE and choroidal capillaries, thus promoting choroidal neovascularization (CNV). HUHS015 inhibited CNV synergistically with the anti-VEGF drug Aflibercept. Our study provides critical insights into the molecular mechanisms and metabolic events facilitating the progression from RPE degeneration to CNV in AMD, laying the groundwork for new treatments of AMD.
ORGANISM(S): Homo sapiens
PROVIDER: GSE274399 | GEO | 2024/08/14
REPOSITORIES: GEO
ACCESS DATA