Methionine cycle dysregulation mediates REDD1 overexpression-induced muscle atrophy in cancer cachexia
Ontology highlight
ABSTRACT: The essential amino acid methionine plays a pivotal role in one-carbon metabolism, facilitating the production of S-adenosylmethionine (SAMe), a critical supplier for DNA methylation. Here we find the disruption of methionine metabolism by rapid SAMe depletion in skeletal muscle in cancer cachexia, leading to endoplasmic reticulum (ER) stress and the overexpression of regulated in development and DNA damage responses (REDD1). Targeting the DNA methylation process via DNA methyltransferases (DNMTs) and REDD1 knockout can alleviate cancer cachexia-induced skeletal muscle atrophy. Methionine supplementation maintains the DNA methylation of DNA damage-inducible transcript 4 (Ddit4) by DNMT3A, thereby inhibiting activating transcription factor 4 (ATF4)-mediated Ddit4 transcription. Our study suggests that methionine or SAMe supplementation can effectively reverse muscle atrophy in cancer cachexia, providing valuable mechanistic insights and a promising therapeutic strategy for clinical application.
Project description:Cancer cachexia is a prevalent and often fatal wasting condition that cannot be fully reversed with nutritional interventions. Muscle atrophy is a central component of the syndrome, but the mechanisms whereby cancer leads to skeletal muscle atrophy are not well understood. We performed single nucleus multi-omics on skeletal muscles from a mouse model of cancer cachexia and profiled the molecular changes in cachexic muscle. Our results revealed the activation of a denervation-induced gene program that upregulates the transcription factor myogenin. Further studies showed that a myogenin-myostatin pathway promotes muscle atrophy in response to cancer cachexia. shRNA inhibition of myogenin or inhibition of myostatin through overexpression of its endogenous inhibitor follistatin prevented cancer cachexia-induced muscle atrophy in mice. Our findings uncover a molecular basis of cancer cachexia-induced muscle atrophy and highlight potential therapeutic targets for this disorder.
Project description:Cancer cachexia is a prevalent and often fatal wasting condition that cannot be fully reversed with nutritional interventions. Muscle atrophy is a central component of the syndrome, but the mechanisms whereby cancer leads to skeletal muscle atrophy are not well understood. We performed single nucleus multi-omics on skeletal muscles from a mouse model of cancer cachexia and profiled the molecular changes in cachexic muscle. Our results revealed the activation of a denervation-induced gene program that upregulates the transcription factor myogenin. Further studies showed that a myogenin-myostatin pathway promotes muscle atrophy in response to cancer cachexia. shRNA inhibition of myogenin or inhibition of myostatin through overexpression of its endogenous inhibitor follistatin prevented cancer cachexia-induced muscle atrophy in mice. Our findings uncover a molecular basis of cancer cachexia-induced muscle atrophy and highlight potential therapeutic targets for this disorder.
Project description:Cancer cachexia is a prevalent and often fatal wasting condition that cannot be fully reversed with nutritional interventions. Muscle atrophy is a central component of the syndrome, but the mechanisms whereby cancer leads to skeletal muscle atrophy are not well understood. We performed single nucleus multi-omics on skeletal muscles from a mouse model of cancer cachexia and profiled the molecular changes in cachexic muscle. Our results revealed the activation of a denervation-induced gene program that upregulates the transcription factor myogenin. Further studies showed that a myogenin-myostatin pathway promotes muscle atrophy in response to cancer cachexia. shRNA inhibition of myogenin or inhibition of myostatin through overexpression of its endogenous inhibitor follistatin prevented cancer cachexia-induced muscle atrophy in mice. Our findings uncover a molecular basis of cancer cachexia-induced muscle atrophy and highlight potential therapeutic targets for this disorder.
Project description:Even though cutaneous atrophy is the major adverse effect of topical glucocorticoids, its molecular mechanisms are poorly understood. We found that glucocorticoids strongly increased the expression of REDD1 (regulated in development and DNA damage response 1), a stress-inducible inhibitor of mTOR, in mouse and human epidermis. We found that REDD1 knockout animals are partially resistant to glucocorticoid-induced epidermal and subcutaneous adipose atrophy which correlated with the protection of CD34+ follicular epithelial stem cells as well as p63+ keratinocyte progenitors in REDD1 knockout epidermis during chronic steroid treatment. At the same time, REDD1 knockout did not affect anti- inflammatory effect of glucocorticoids, as evaluated by ear edema test. Expression profiling revealed that ~ 50% of the glucocorticoid receptor (GR) target genes were not activated in epidermis of REDD1 knockouts, however, the negative effect of glucocorticoids on gene expression was similar to that in w.t. animals. Overall, our findings reveal a novel pathway in GR activation by its target gene/protein REDD1; and indicate an important role of REDD1 in glucocorticoid-induced skin atrophy, and maintenance of the epidermis and subcutaneous adipose. In addition, our findings form the foundation for the development of safer topical glucocorticoid treatment regimens by combining this therapy with REDD1 inhibitors.
Project description:Decline in skeletal muscle cell size (myofiber atrophy) is a key feature of cancer-induced wasting (cachexia). In particular, atrophy of the diaphragm, the major muscle responsible for breathing, is an important determinant of cancer-associated mortality. However, therapeutic options are limited. Here, we have used Drosophila transgenic screening to identify muscle-secreted factors (myokines) that act as paracrine regulators of myofiber growth. Subsequent testing in mouse myotubes revealed that mouse Fibcd1 is an evolutionary-conserved myokine that preserves myofiber size via ERK signaling. Local administration of recombinant Fibcd1 (rFibcd1) ameliorates cachexia-induced myofiber atrophy in the diaphragm of mice bearing patient-derived melanoma xenografts and LLC carcinomas. Moreover, rFibcd1 impedes cachexia-associated transcriptional changes in the diaphragm. Fibcd1-induced signaling appears to be muscle selective because rFibcd1 increases ERK activity in myotubes but not in several cancer cell lines tested. We propose that rFibcd1 may help reinstate myofiber size in the diaphragm of patients with cancer cachexia.
Project description:Decline in skeletal muscle cell size (myofiber atrophy) is a key feature of cancer-induced wasting (cachexia). In particular, atrophy of the diaphragm, the major muscle responsible for breathing, is an important determinant of cancer-associated mortality. However, therapeutic options are limited. Here, we have used Drosophila transgenic screening to identify muscle-secreted factors (myokines) that act as paracrine regulators of myofiber growth. Subsequent testing in mouse myotubes revealed that mouse Fibcd1 is an evolutionary-conserved myokine that preserves myofiber size via ERK signaling. Local administration of recombinant Fibcd1 (rFibcd1) ameliorates cachexia-induced myofiber atrophy in the diaphragm of mice bearing patient-derived melanoma xenografts and LLC carcinomas. Moreover, rFibcd1 impedes cachexia-associated transcriptional changes in the diaphragm. Fibcd1-induced signaling appears to be muscle selective because rFibcd1 increases ERK activity in myotubes but not in several cancer cell lines tested. We propose that rFibcd1 may help reinstate myofiber size in the diaphragm of patients with cancer cachexia.
Project description:Decline in skeletal muscle cell size (myofiber atrophy) is a key feature of cancer-induced wasting (cachexia). In particular, atrophy of the diaphragm, the major muscle responsible for breathing, is an important determinant of cancer-associated mortality. However, therapeutic options are limited. Here, we have used Drosophila transgenic screening to identify muscle-secreted factors (myokines) that act as paracrine regulators of myofiber growth. Subsequent testing in mouse myotubes revealed that mouse Fibcd1 is an evolutionary-conserved myokine that preserves myofiber size via ERK signaling. Local administration of recombinant Fibcd1 (rFibcd1) ameliorates cachexia-induced myofiber atrophy in the diaphragm of mice bearing patient-derived melanoma xenografts and LLC carcinomas. Moreover, rFibcd1 impedes cachexia-associated transcriptional changes in the diaphragm. Fibcd1-induced signaling appears to be muscle selective because rFibcd1 increases ERK activity in myotubes but not in several cancer cell lines tested. We propose that rFibcd1 may help reinstate myofiber size in the diaphragm of patients with cancer cachexia.
Project description:Cancer cachexia is a devastating metabolic syndrome characterized by systemic inflammation and massive muscle and adipose tissue wasting. Although cancer cachexia is responsible for approximately one third of cancer deaths, no effective therapies are available and the underlying mechanisms have not been fully elucidated.We have found that (+)-JQ1 administration protects tumor-bearing mice from body weight loss, muscle and adipose tissue wasting. Remarkably, in C26-tumor bearing mice (+)-JQ1 administration dramatically prolongs survival, without directly affecting tumor growth. By ChIP-seq analyses, we unveil that the BET proteins directly promote the muscle atrophy program during cachexia. Consistently, BET pharmacological blockade prevents the activation of catabolic genes associated with skeletal muscle atrophy and decreases IL6 systemic levels. Overall, these findings indicate that BET may represent a promising therapeutic target in the management of cancer cachexia.
Project description:Background Loss of skeletal muscle mass in advanced cancer is recognized as an independent predictor of mortality. Mechanisms involved in this wasting process and parameters for early diagnosis are still lacking. As skeletal muscle is considered as a secretory organ, the aim of this present experimental work was to characterize the changes in muscle proteome and secretome associated with cancer-induced cachexia to better understand cellular mechanisms involved in this wasting process and to identify secreted proteins which might reflect the ongoing muscle atrophy process. Methods We investigated first the changes in the muscle proteome associated with cancer-induced cachexia by using differential label-free proteomic analysis on muscle of the C26 mouse model. The differentially abundant proteins were submitted to sequential bioinformatic secretomic analysis in order to identify potentially secreted proteins. Selected reaction monitoring and Western blotting were used to verify the presence of candidate proteins at the circulating level. Their muscle source was demonstrated by assessing their gene expression in skeletal muscle and in cultured myotubes. Finally, we also investigated their regulation in muscle cells. Alterations in several molecular pathways potentially involved in muscle atrophy were highlighted using Gene ontology enrichment analyses. Results Our results revealed a dramatic increased production (2-to 25-fold) by the muscle of several acute phase reactants (APR: Haptoglobin, Serpina3n, Complement C3, Serum amyloid A1) which are also released in the circulation during C26 cancer cachexia. Their production was confirmed in other preclinical models of cancer cachexia as well as in cancer patients. The muscular origin of these APR was demonstrated by their increased expression in skeletal muscle and myotubes. Glucocorticoids and pro-inflammatory cytokines contribute directly to their increased expression in muscle cells in vitro, while the role of IL-6 in the muscular induction of these APR was demonstrated in vivo. Conclusions Cancer is associated with marked changes in muscle secretome during muscle wasting. Our study demonstrates a marked increased production of APR by skeletal muscle in pre-clinical models of cancer cachexia and in cancer patients. Further studies are required to unravel the potential role of these proteins in muscle atrophy and their interest as biomarkers of cancer cachexia.