LncRNA IRF1-AS1/Gm12216 regulates the interferon response to viral challenge [ChIRP-Seq]
Ontology highlight
ABSTRACT: Long non-coding RNAs (lncRNAs) are important regulators of the immune response. Here we study lincRNA IRF1-AS1 (human) and its mouse ortholog Gm12216. We established that IRF1-AS1/Gm12216 is involved in the antiviral response.
Project description:Oncolytic viruses exploit common molecular changes in cancer cells, which are not present in normal cells, to target and kill cancer cells. Ras transformation and defects in type I interferon (IFN)-mediated antiviral responses are known to be the major mechanisms underlying viral oncolysis. Previously, we demonstrated that oncogenic RAS/Mitogen-activated protein kinase kinase (Ras/MEK) activation suppresses the transcription of many IFN-inducible genes in human cancer cells, suggesting that Ras transformation underlies type I IFN defects in cancer cells. Here, we investigated how Ras/MEK downregulates IFN-induced transcription. By conducting promoter deletion analysis of IFN-inducible genes, namely guanylate-binding protein 2 and IFN gamma inducible protein 47 (Ifi47), we identified the IFN regulatory factor 1 (IRF1) binding site as the promoter region responsible for the regulation of transcription by MEK. MEK inhibition promoted transcription of the IFN-inducible genes in wild type mouse embryonic fibroblasts (MEFs), but not in IRF1?/? MEFs, showing that IRF1 is involved in MEK-mediated downregulation of IFN-inducible genes. Furthermore, IRF1 protein expression was lower in RasV12 cells compared with vector control NIH3T3 cells, but was restored to equivalent levels by inhibition of MEK. Similarly, the restoration of IRF1 expression by MEK inhibition was observed in human cancer cells. IRF1 re-expression in human cancer cells caused cells to become resistant to infection by the oncolytic vesicular stomatitis virus strain. Together, this work demonstrates that Ras/MEK activation in cancer cells downregulates transcription of IFN-inducible genes by targeting IRF1 expression, resulting in increased susceptibility to viral oncolysis. RNA was isolated from RasV12 transformed NIH/3T3 cells (RasV12 cells) treated with 20?M U0126 or 500U/ml IFN-?, or left untreated, for 6 hours, triplicate biological samples (9 samples).
Project description:Our study indicates that lncRNA TRAF3IP2-AS1 serving as a negative regulator of Act1 transcriptional expression and IL-17 signaling pathway activity,recruits SRSF10 to downregulate the transcription of IRF1, which is itself a transcriptional factor for Act1. And the psoriasis-susceptible variant A4165G of TRAF3IP2-AS1 is a gain-of-function mutant that binds more strongly than the wild-type form to SRSF10. It means that TRAF3IP2-AS1 or SRSF10 may be a good target for the treatment of human IL-17-related autoimmune diseases.
Project description:Hepatocellular carcinoma (HCC) is the most prevalent liver cancer, characterized by a high rate of recurrence and heterogeneity. Liver cancer stem cells (CSCs) may well contribute to both of these pathological properties, but the mechanism underlying their self-renewal and maintenance are poorly understood. Here we identified a long noncoding RNA (lncRNA) termed HAND2-AS1 that is highly expressed in liver CSCs. Human HAND2-AS1 is highly conserved to its mouse ortholog lncHand2. HAND2-AS1 is required for the self-renewal maintenance of liver CSCs to initiate HCC development. Mechanically, HAND2-AS1 recruits the INO80 complex onto BMPR1A promoter to trigger its expression, leading to the activation of BMP signaling. Importantly, targeting HAND2-AS1 by antisense oligonucleotides (ASOs) and BMPR1A by siRNAs have synergistic anti-tumor effects on humanized HCC models. Moreover, knockout of lncHand2 or Bmpr1a in mouse hepatocytes impairs BMP signaling and suppresses the initiation of liver cancer. Our findings reveal that HAND2-AS1 promotes the self-renewal of liver CSCs and drives liver oncogenesis, which may be a potential target for HCC therapy.
Project description:Host defense against diverse pathogens involves the recruitment and differentiation of CD4+ T effector subsets including T helper 1 (Th1), Th2, Th17 and induced regulatory T (Treg) cells. Surface phenotype studies have revealed subset-specific surface markers for the identification and purification of human primary CD4+ T effector subsets. In the present study, we aimed to characterize the mRNA and large intergenic non-coding RNA (lincRNA) expression differences between human primary CD4+ T effector subsets and identify potential subset-specific genes. To achieve this goal, mRNA and lincRNA microarray profiling of flow cytometry-sorted human primary Th1, Th2, Th17 and Treg cells was performed. Principal component and pathway analyses revealed subset-specific gene expression patterns. A Th2-specific lincRNA, GATA3-AS1, also termed FLJ45983, was identified in primary immune cells and tissues, as well as in in vitro polarized CD4+ T effector subsets. Further analysis showed that GATA3-AS1 was a potential diagnostic marker in allergy, a Th2-associated disease. This first systematic genome-wide analysis of gene expression differences between primary CD4+ T effector subsets may help to identify novel regulatory protein-coding genes and lincRNAs regulating CD4+ T cell subset differentiation, as well as potential diagnostic markers. As an example, we identified a GATA3-associated Th2-specific marker lincRNA GATA3-AS1. Gene expression microarray analysis of flow-cytometry sorted human primary naïve CD4+ T cells, CD4+ T central memory cells, Th1, Th2, Th17 and Treg cells from buffy coat of four healthy controls Gene expression microarray analysis was performed using SurePrint G3 Human Gene Expression 8X60K microarray.
Project description:The study of the interferon (IFN) α-induced cell transcriptome has shown altered expression of several long non-coding RNAs (lncRNAs). ISR8 / IRF1-AS1 (IFN stimulated RNA 8), located close to IFN regulatory factor 1 (IRF1) coding gene, transcribes a lncRNA induced at early times after IFNα treatment or IRF1 or NF-κB activation. Depletion or overexpression of ISR8 RNA does not lead to detected deregulation of the IFN response. Surprisingly, disruption of ISR8 locus with CRISPR-Cas9 genome editing results in cells that fail to induce several key ISGs and pro-inflammatory cytokines after a trigger with IFNα or overexpression of IRF1 or the NF-κB subunit RELA. This suggests that the ISR8 locus may play a relevant role in IFNα and NF-κB pathways. Interestingly, IFNα, IRFs and NF-κB-responding luciferase reporters are normally induced in ISR8-disrupted cells when expressed from a plasmid but not when integrated into the genome. Therefore, IFNα and NF-κB pathways are functional to induce the expression of exogenous episomic transcripts but fail to activate transcription from genomic promoters. Transcription from these promoters is not restored with silencing inhibitors, by decreasing the levels of several negative regulators or by overexpression of inducers. Transcriptome analyses indicate that ISR8-disrupted cells have a drastic increase in the levels of negative regulators such as XIST and Zinc finger proteins. Our results agree with ISR8 loci being an enhancer region that is fundamental for proper antiviral and proinflammatory responses. These results are relevant because several SNPs located in the ISR8 region are associated with chronic inflammatory and autoimmune diseases including Crohn’s disease, inflammatory bowel disease, ulcerative colitis or asthma.
Project description:Host defense against diverse pathogens involves the recruitment and differentiation of CD4+ T effector subsets including T helper 1 (Th1), Th2, Th17 and induced regulatory T (Treg) cells. Surface phenotype studies have revealed subset-specific surface markers for the identification and purification of human primary CD4+ T effector subsets. In the present study, we aimed to characterize the mRNA and large intergenic non-coding RNA (lincRNA) expression differences between human primary CD4+ T effector subsets and identify potential subset-specific genes. To achieve this goal, mRNA and lincRNA microarray profiling of flow cytometry-sorted human primary Th1, Th2, Th17 and Treg cells was performed. Principal component and pathway analyses revealed subset-specific gene expression patterns. A Th2-specific lincRNA, GATA3-AS1, also termed FLJ45983, was identified in primary immune cells and tissues, as well as in in vitro polarized CD4+ T effector subsets. Further analysis showed that GATA3-AS1 was a potential diagnostic marker in allergy, a Th2-associated disease. This first systematic genome-wide analysis of gene expression differences between primary CD4+ T effector subsets may help to identify novel regulatory protein-coding genes and lincRNAs regulating CD4+ T cell subset differentiation, as well as potential diagnostic markers. As an example, we identified a GATA3-associated Th2-specific marker lincRNA GATA3-AS1.
Project description:Oncolytic viruses exploit common molecular changes in cancer cells, which are not present in normal cells, to target and kill cancer cells. Ras transformation and defects in type I interferon (IFN)-mediated antiviral responses are known to be the major mechanisms underlying viral oncolysis. Previously, we demonstrated that oncogenic RAS/Mitogen-activated protein kinase kinase (Ras/MEK) activation suppresses the transcription of many IFN-inducible genes in human cancer cells, suggesting that Ras transformation underlies type I IFN defects in cancer cells. Here, we investigated how Ras/MEK downregulates IFN-induced transcription. By conducting promoter deletion analysis of IFN-inducible genes, namely guanylate-binding protein 2 and IFN gamma inducible protein 47 (Ifi47), we identified the IFN regulatory factor 1 (IRF1) binding site as the promoter region responsible for the regulation of transcription by MEK. MEK inhibition promoted transcription of the IFN-inducible genes in wild type mouse embryonic fibroblasts (MEFs), but not in IRF1−/− MEFs, showing that IRF1 is involved in MEK-mediated downregulation of IFN-inducible genes. Furthermore, IRF1 protein expression was lower in RasV12 cells compared with vector control NIH3T3 cells, but was restored to equivalent levels by inhibition of MEK. Similarly, the restoration of IRF1 expression by MEK inhibition was observed in human cancer cells. IRF1 re-expression in human cancer cells caused cells to become resistant to infection by the oncolytic vesicular stomatitis virus strain. Together, this work demonstrates that Ras/MEK activation in cancer cells downregulates transcription of IFN-inducible genes by targeting IRF1 expression, resulting in increased susceptibility to viral oncolysis.
Project description:Prostate cancer is the most common cancer in men and AR downstream signalings promote prostate cancer cell proliferation. We identified a novel androgen-regulated long non-coding (lnc) RNA, SOCS2-AS1. In order to investigate the SOCS2-AS1 function in prostate cancer cells, we performed gene expression in AR-positive prostate cancer cell lines (LNCaP and LTAD) after siSOCS2-AS1 or siSOCS2 treatment. We also treated cells with vehicle or androgen to analyzed the effects of siSOCS2-AS1 on AR function. Observation of androgen dependent gene expression changes after treatmet with siSOCS2-AS1 with microarray.