HIRA and dPCIF1 coordinately establish totipotent chromatin and control orderly ZGA in Drosophila embryos (response) [RNA-seq]
Ontology highlight
ABSTRACT: Early embryos undergo profound changes in their genomic architecture to establish the totipotent state, enabling pioneer factors to access chromatin and drive zygotic genome activation (ZGA). However, the mechanisms by which the totipotent state is established and properly interpreted by pioneer factors to allow orderly ZGA remain unknown. Here, we identify the H3.3-specific chaperone HIRA as a critical factor involving establishing totipotent-state chromatin in Drosophila early embryos. Through co-phase separation with HIRA, the pioneer factor GAGA factor (GAF) efficiently binds to H3.3-marked nucleosomes to activate major-wave zygotic genes. Importantly, dPCIF1, a chromatin-associated protein, antagonized the GAF–HIRA interaction by competitively binding to HIRA, thereby restricting GAF on earlier chromatin and avoiding premature ZGA. Hence, the coordinated action of HIRA and dPCIF1 ensures sequential ZGA from the minor to major wave in early embryos. This study provides insights into understanding how a totipotent state is established and properly controlled during ZGA.
Project description:Early embryos undergo profound changes in their genomic architecture to establish the totipotent state, enabling pioneer factors to access chromatin and drive zygotic genome activation (ZGA). However, the mechanisms by which the totipotent state is established and properly interpreted by pioneer factors to allow orderly ZGA remain unknown. Here, we identify the H3.3-specific chaperone HIRA as a critical factor involving establishing totipotent-state chromatin in Drosophila early embryos. Through co-phase separation with HIRA, the pioneer factor GAGA factor (GAF) efficiently binds to H3.3-marked nucleosomes to activate major-wave zygotic genes. Importantly, dPCIF1, a chromatin-associated protein, antagonized the GAF–HIRA interaction by competitively binding to HIRA, thereby restricting GAF on earlier chromatin and avoiding premature ZGA. Hence, the coordinated action of HIRA and dPCIF1 ensures sequential ZGA from the minor to major wave in early embryos. This study provides insights into understanding how a totipotent state is established and properly controlled during ZGA.
Project description:Early embryos undergo profound changes in their genomic architecture to establish the totipotent state, enabling pioneer factors to access chromatin and drive zygotic genome activation (ZGA). However, the mechanisms by which the totipotent state is established and properly interpreted by pioneer factors to allow orderly ZGA remain unknown. Here, we identify the H3.3-specific chaperone HIRA as a critical factor involving establishing totipotent-state chromatin in Drosophila early embryos. Through co-phase separation with HIRA, the pioneer factor GAGA factor (GAF) efficiently binds to H3.3-marked nucleosomes to activate major-wave zygotic genes. Importantly, dPCIF1, a chromatin-associated protein, antagonized the GAF–HIRA interaction by competitively binding to HIRA, thereby restricting GAF on earlier chromatin and avoiding premature ZGA. Hence, the coordinated action of HIRA and dPCIF1 ensures sequential ZGA from the minor to major wave in early embryos. This study provides insights into understanding how a totipotent state is established and properly controlled during ZGA.
Project description:Early embryos undergo profound changes in their genomic architecture to establish the totipotent state, enabling pioneer factors to access chromatin and drive zygotic genome activation (ZGA). However, the mechanisms by which the totipotent state is established and properly interpreted by pioneer factors to allow orderly ZGA remain unknown. Here, we identify the H3.3-specific chaperone HIRA as a critical factor involving establishing totipotent-state chromatin in Drosophila early embryos. Through co-phase separation with HIRA, the pioneer factor GAGA factor (GAF) efficiently binds to H3.3-marked nucleosomes to activate major-wave zygotic genes. Importantly, dPCIF1, a chromatin-associated protein, antagonized the GAF–HIRA interaction by competitively binding to HIRA, thereby restricting GAF on earlier chromatin and avoiding premature ZGA. Hence, the coordinated action of HIRA and dPCIF1 ensures sequential ZGA from the minor to major wave in early embryos. This study provides insights into understanding how a totipotent state is established and properly controlled during ZGA.
Project description:Early embryos undergo profound changes in their genomic architecture to establish the totipotent state, enabling pioneer factors to access chromatin and drive zygotic genome activation (ZGA). However, the mechanisms by which the totipotent state is established and properly interpreted by pioneer factors to allow orderly ZGA remain unknown. Here, we identify the H3.3-specific chaperone HIRA as a factor involving establishing totipotent-state chromatin in Drosophila early embryos. Through cophase separation with HIRA, the pioneer factor GAGA factor (GAF) efficiently binds to H3.3-marked nucleosomes to activate major-wave zygotic genes. Importantly, dPCIF1, a chromatin-associated protein, antagonized the GAF-HIRA interaction by competitively binding to HIRA, thereby restricting GAF on earlier chromatin and avoiding premature ZGA. Hence, the coordinated action of HIRA and dPCIF1 ensures sequential ZGA from the minor to major wave in early embryos. This study provides insights into understanding how a totipotent state is established and properly controlled during ZGA.
Project description:Following fertilization, the genomes of the germ cells are reprogrammed to form the totipotent embryo. Pioneer transcription factors are essential for remodeling the chromatin and driving the initial wave of zygotic gene expression. In Drosophila melanogaster, the pioneer factor Zelda is essential for development through this dramatic period of reprogramming, known as the maternal- to-zygotic transition (MZT). However, it was unknown whether additional pioneer factors were required for this transition. We identified an additional maternally encoded factor required for development through the MZT, GAGA Factor (GAF). GAF is necessary to activate widespread zygotic transcription and to remodel the chromatin accessibility landscape. We demonstrated that Zelda preferentially controls expression of the earliest transcribed genes, while genes expressed during widespread activation are predominantly dependent on GAF. Thus, progression through the MZT requires coordination of multiple pioneer-like factors, and we propose that as development proceeds control is gradually transferred from Zelda to GAF.