Transcriptomics

Dataset Information

0

Multiple Evolutionary Pathways to Host Adaptation in the Fall Armyworm


ABSTRACT: During the over 300 million years of co-evolution between herbivorous insects and their host plants, a dynamic equilibrium of evolutionary arms race has been established. However, the co-adaptation between insects and their host plants is a complex process, often driven by multiple evolutionary mechanisms. We found that various lepidopteran pests that use maize as a host exhibit differential adaptation to the plant secondary metabolites, benzoxazinoids (BXs). Notably, the Spodoptera genus, including Spodoptera frugiperda (fall armyworm) and Spodoptera litura (cotton leafworm), demonstrate greater tolerance to BXs compared to other insects. Through comparative transcriptomic analysis of the midgut, we identified four candidate genes potentially involved in BXs detoxification in S. frugiperda. Subsequently, we confirmed two UGT genes, Sfru33T10 and Sfru33F32, as key players in BXs detoxification using CRISPR/Cas9 gene-editing technology. Phylogenetic analysis revealed that Sfru33T10 evolved independently within the Noctuidae family and is involved in the glycosylation of HDMBOA, while Sfru33F32 evolved independently within the Spodoptera genus and functions as a key detoxification enzyme responsible for the glycosylation of both DIMBOA and HMBOA. Our study demonstrates that the UGT gene family plays a crucial role in the adaptation of noctuid insects to maize, with multiple independent evolutionary events within the Noctuidae family and the Spodoptera genus contributing significantly to host adaptation.

ORGANISM(S): Spodoptera frugiperda

PROVIDER: GSE276946 | GEO | 2024/09/18

REPOSITORIES: GEO

Similar Datasets

2019-02-11 | E-MTAB-6540 | biostudies-arrayexpress
2021-08-06 | GSE175476 | GEO
2024-08-31 | GSE197737 | GEO
2023-03-08 | GSE226546 | GEO
2015-06-11 | E-GEOD-60064 | biostudies-arrayexpress
2019-12-03 | E-MTAB-7976 | biostudies-arrayexpress
2015-06-11 | GSE60064 | GEO
2020-02-09 | GSE114901 | GEO
2022-12-17 | GSE208603 | GEO
2011-04-05 | E-GEOD-17293 | biostudies-arrayexpress