Exploring Integrin α5β1 as a Potential Therapeutic Target for Pulmonary Arterial Hypertension: Insights from Comprehensive Multicenter Preclinical Studies
Ontology highlight
ABSTRACT: Pulmonary arterial hypertension (PAH) is characterized by obliterative vascular remodeling of the small pulmonary arteries (PA) and progressive increase in pulmonary vascular resistance (PVR) leading to right ventricular (RV) failure. Although several drugs are approved for the treatment of PAH, mortality remains high. Accumulating evidence supports a pathological function of integrins in vessel remodeling, which are gaining renewed interest as drug targets. However, their role in PAH remains largely unexplored. We found that the arginine-glycine-aspartate (RGD)-binding integrin a5b1 is upregulated in PA endothelial cells (PAEC) and PA smooth muscle cells (PASMC) from PAH patients and remodeled PAs from animal models. Blockade of the integrin a5b1 or depletion of the a5 subunit resulted in mitotic defects and inhibition of the pro-proliferative and apoptosis-resistant phenotype of PAH cells. Using a novel small molecule integrin inhibitor and neutralizing antibodies, we demonstrated that α5β1 integrin blockade attenuates pulmonary vascular remodeling and improves hemodynamics and RV function in multiple preclinical models. Our results provide converging evidence to consider α5β1 integrin inhibition as a promising therapy for pulmonary hypertension
ORGANISM(S): Homo sapiens
PROVIDER: GSE277556 | GEO | 2024/12/31
REPOSITORIES: GEO
ACCESS DATA