Interferon subverts an AHR-JUN axis to promote CXCL13+ T cell in lupus [Time_coure_RNAseq]
Ontology highlight
ABSTRACT: Expansion of B cell-helper T cells including T follicular helper (Tfh) and T peripheral helper (Tph) cells is a prominent feature of systemic lupus erythematosus (SLE), a prototypical autoimmune disease with broad autoantibody production. Human Tfh and Tph cells are marked by high production of the B cell chemoattractant CXCL13, yet regulation of T cell CXCL13 production and the relationship between a CXCL13+ state and other differentiated T cell states remains largely undefined. Here, we identify a dramatic imbalance in CD4 T cell phenotypes in SLE patients, with expansion of PD-1+/ICOS+ CXCL13+ T cells and reduction of CD96hi IL-22+ T cells. Using CRISPR screens, we identify the aryl hydrocarbon receptor (AHR) as a potent negative regulator of CXCL13 production by human CD4 T cells. Transcriptomic, epigenetic, and functional studies demonstrate that AHR coordinates with AP-1 family member JUN to prevent CXCL13+ Tph/Tfh cell differentiation and promote an IL-22+ phenotype. Type I interferon (IFN), a pathogenic driver of SLE, opposes AHR and JUN to promote T cell production of CXCL13. These results place CXCL13+ Tph/Tfh cells on a polarization axis opposite from Th22 cells and reveal AHR, JUN, and IFN as key regulators of these divergent T cell states.
Project description:SLE is prototypical autoimmune disease driven by pathologic T cell-B cell interactions. Expansion of B cell-helper T cells including T follicular helper (Tfh) and T peripheral helper (Tph) cells is a prominent feature of systemic lupus erythematosus (SLE). Human Tfh and Tph cells characteristically produce high levels of the B cell chemoattractant CXCL13, yet regulation of T cell CXCL13 production and the relationship between CXCL13+ T cells and other T cell states remains unclear. Here, we identify an imbalance in CD4 T cell phenotypes in SLE patients, with expansion of PD-1+/ICOS+ CXCL13+ T cells and reduction of CD96hi IL-22+ T cells. Using CRISPR screens, we identify the aryl hydrocarbon receptor (AHR) as a potent negative regulator of CXCL13 production by human CD4 T cells. Transcriptomic, epigenetic, and functional studies demonstrate that AHR coordinates with AP-1 family member JUN to prevent CXCL13+ Tph/Tfh cell differentiation and promote an IL-22+ phenotype. Type I interferon (IFN), a pathogenic driver of SLE, opposes AHR and JUN to promote T cell production of CXCL13. These results place CXCL13+ Tph/Tfh cells on a polarization axis opposite from Th22 cells and reveal AHR, JUN, and IFN as key regulators of these divergent T cell states.
Project description:SLE is prototypical autoimmune disease driven by pathologic T cell-B cell interactions. Expansion of B cell-helper T cells including T follicular helper (Tfh) and T peripheral helper (Tph) cells is a prominent feature of systemic lupus erythematosus (SLE). Human Tfh and Tph cells characteristically produce high levels of the B cell chemoattractant CXCL13 yet regulation of T cell CXCL13 production and the relationship between CXCL13+ T cells and other T cell states remains unclear. Here, we identify an imbalance in CD4 T cell phenotypes in SLE patients, with expansion of PD-1+/ICOS+ CXCL13+ T cells and reduction of CD96hi IL-22+ T cells. Using CRISPR screens, we identify the aryl hydrocarbon receptor (AHR) as a potent negative regulator of CXCL13 production by human CD4 T cells. Transcriptomic, epigenetic, and functional studies demonstrate that AHR coordinates with AP-1 family member JUN to prevent CXCL13+ Tph/Tfh cell differentiation and promote an IL-22+ phenotype. Type I interferon (IFN), a pathogenic driver of SLE, opposes AHR and JUN to promote T cell production of CXCL13. These results place CXCL13+ Tph/Tfh cells on a polarization axis opposite from Th22 cells and reveal AHR, JUN, and IFN as key regulators of these divergent T cell states.
Project description:SLE is prototypical autoimmune disease driven by pathologic T cell-B cell interactions. Expansion of B cell-helper T cells including T follicular helper (Tfh) and T peripheral helper (Tph) cells is a prominent feature of systemic lupus erythematosus (SLE). Human Tfh and Tph cells characteristically produce high levels of the B cell chemoattractant CXCL13, yet regulation of T cell CXCL13 production and the relationship between CXCL13+ T cells and other T cell states remains unclear. Here, we identify an imbalance in CD4 T cell phenotypes in SLE patients, with expansion of PD-1+/ICOS+ CXCL13+ T cells and reduction of CD96hi IL-22+ T cells. Using CRISPR screens, we identify the aryl hydrocarbon receptor (AHR) as a potent negative regulator of CXCL13 production by human CD4 T cells. Transcriptomic, epigenetic, and functional studies demonstrate that AHR coordinates with AP-1 family member JUN to prevent CXCL13+ Tph/Tfh cell differentiation and promote an IL-22+ phenotype. Type I interferon (IFN), a pathogenic driver of SLE, opposes AHR and JUN to promote T cell production of CXCL13. These results place CXCL13+ Tph/Tfh cells on a polarization axis opposite from Th22 cells and reveal AHR, JUN, and IFN as key regulators of these divergent T cell states.
Project description:SLE is prototypical autoimmune disease driven by pathologic T cell-B cell interactions. Expansion of B cell-helper T cells including T follicular helper (Tfh) and T peripheral helper (Tph) cells is a prominent feature of systemic lupus erythematosus (SLE). Human Tfh and Tph cells characteristically produce high levels of the B cell chemoattractant CXCL13, yet regulation of T cell CXCL13 production and the relationship between CXCL13+ T cells and other T cell states remains unclear. Here, we identify an imbalance in CD4 T cell phenotypes in SLE patients, with expansion of PD-1+/ICOS+ CXCL13+ T cells and reduction of CD96hi IL-22+ T cells. Using CRISPR screens, we identify the aryl hydrocarbon receptor (AHR) as a potent negative regulator of CXCL13 production by human CD4 T cells. Transcriptomic, epigenetic, and functional studies demonstrate that AHR coordinates with AP-1 family member JUN to prevent CXCL13+ Tph/Tfh cell differentiation and promote an IL-22+ phenotype. Type I interferon (IFN), a pathogenic driver of SLE, opposes AHR and JUN to promote T cell production of CXCL13. These results place CXCL13+ Tph/Tfh cells on a polarization axis opposite from Th22 cells and reveal AHR, JUN, and IFN as key regulators of these divergent T cell states.
Project description:SLE is prototypical autoimmune disease driven by pathologic T cell-B cell interactions. Expansion of B cell-helper T cells including T follicular helper (Tfh) and T peripheral helper (Tph) cells is a prominent feature of systemic lupus erythematosus (SLE). Human Tfh and Tph cells characteristically produce high levels of the B cell chemoattractant CXCL135,6, yet regulation of T cell CXCL13 production and the relationship between CXCL13+ T cells and other T cell states remains unclear. Here, we identify an imbalance in CD4 T cell phenotypes in SLE patients, with expansion of PD-1+/ICOS+ CXCL13+ T cells and reduction of CD96hi IL-22+ T cells. Using CRISPR screens, we identify the aryl hydrocarbon receptor (AHR) as a potent negative regulator of CXCL13 production by human CD4 T cells. Transcriptomic, epigenetic, and functional studies demonstrate that AHR coordinates with AP-1 family member JUN to prevent CXCL13+ Tph/Tfh cell differentiation and promote an IL-22+ phenotype. Type I interferon (IFN), a pathogenic driver of SLE7, opposes AHR and JUN to promote T cell production of CXCL13. These results place CXCL13+ Tph/Tfh cells on a polarization axis opposite from Th22 cells and reveal AHR, JUN, and IFN as key regulators of these divergent T cell states.
Project description:Chronic graft versus host disease (cGVHD) is a systemic autoimmune-like syndrome. The role of Tph cells in the pathogenesis of cGVHD has not been examined, although previous studies have shown that cGVHD is characterized by loss of Tfh cells. Here, we show that in cGVHD patients and in a murine model that reflects characteristic features of human cGVHD, the proportions of Tph cells among CD4+ T cells in the blood were expanded. These cells augmented memory B cell differentiation and production of IgG via IL-21. Adoptive transfer experiments showed recirculation between Tph in the blood and tissue-resident T helper (Trh) cells in GVHD target tissues. The TCR repertoires of blood Tph cells and Trh cells in GVHD target tissues of mice were highly overlapping.
Project description:In this experiment we generated Affymetrix gene expression data for T Follicular Helper (TFH) cells from tonsils of healthy volunteers (4 biological replicates) and naive CD4-positive helper T cells (2 biological replicates). TFH cells provide a model relevant to SLE as TFH operate upstream of the activation of pathogenic autoantibody-producing B cells during the disease. This experiment accompanies promoter capture-C and ATAC-seq experiments on the same cell types.
Project description:Dysregulated T cell homeostasis has been implicated in the pathogenesis of rheumatoid arthritis (RA), in the joint of which peripheral helper T (Tph) cells accumulate and form ectopic lymphoid organs. We examined whether homeostatic signals are involved in the development of Tph cells. Human peripheral blood mononuclear cells(PBMCs) were cultured with IL-7, resulting in the development of PD-1highCXCR5+ Tph-like cells from human peripheral blood CD4 T cells after culture. These IL-7-induced Tph-like (IL-7-Tph) cells produced CXCL13 and IL-21 and helped B cells produce IgG. Comprehensive gene expression analysis further supported their similarity with Tph cells in RA joint, and synovial fluid from RA patients (RASF) greatly promoted the IL-7-induced development of Tph-like cells. Our results demonstrate an antigen-nonspecific developmental pathway of Tph cells triggered by homeostatic signals and promoted by the local joint environment, which accounts for the accumulation of Tph cells in RA joints.
Project description:CD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation. Analysis of in vivo polyclonal GC Tfh vs Tfh vs Non-Tfh eight days after LCMV viral infection. Analysis of in vivo follicular helper CD4 T cells (CXCR5high GL7low), versus germinal center follicular helper CD4 T cells (CXCR5hi GL7hi), versus non-follicular helper CD4 T cells (CXCR5low) eight days after viral infection.
Project description:CD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation. This SuperSeries is composed of the following subset Series: GSE21379: Expression Data from WT and Sh2d1a-/- in vivo follicular helper CD4 T cells (TFH) versus non follicular helper CD4 T cells (non-TFH) GSE21380: Expression Data from in vivo Tfh vs GC Tfh vs non-Tfh Refer to individual Series