Selict-seq profiles genome-wide off-target effects in adenosine base editing
Ontology highlight
ABSTRACT: Adenosine base editors (ABEs) facilitate the conversion of A•T base pairs to G•C base pairs, demonstrating significant potential for correcting pathogenic point mutations in humans. However, the off-target editing effects of ABEs remain inadequately characterized. In this study, we present a biochemical method, Selict-seq, designed to evaluate genome-wide off-target editing by ABEs. Selict-seq specifically captures dI-containing single-stranded DNA (ssDNA) and precisely identifies dA-to-dI mutation sites, thereby elucidating the off-target effects induced by ABEs. Through investigations involving three single-guide RNAs (sgRNAs), we identified numerous unexpected off-target edits both within and outside the protospacer regions. Analysis of these off-target sites revealed distinct characteristics of the ABE8e(V106W). These findings significantly advance our understanding of the off-target landscape associated with ABE8e. In summary, our approach enables an unbiased analysis of the ABE editome and provides a widely applicable tool for specificity evaluation of various emerging genome editing technologies.
Project description:Base editing introduces precise single-nucleotide edits in genomic DNA and has the potential to treat genetic diseases such as the blistering skin disease recessive dystrophic epidermolysis bullosa (RDEB), which is characterized by mutations in the COL7A1 gene and type VII collagen (C7) deficiency. Adenine base editors (ABEs) convert A-T base pairs to G-C base pairs without requiring double-stranded DNA breaks or donor DNA templates. Here, we use ABE8e, a recently evolved ABE, to correct primary RDEB fibroblasts harboring the recurrent RDEB nonsense mutation c.5047 C>T (p.Arg1683Ter) in exon 54 of COL7A1 and use a next generation sequencing workflow to interrogate post-treatment outcomes. Electroporation of ABE8e mRNA into a bulk population of RDEB patient fibroblasts resulted in remarkably efficient (94.6%) correction of the pathogenic allele, restoring COL7A1 mRNA and expression of C7 protein in western blots and in 3D skin constructs. Unbiased off-target DNA and RNA editing analysis did not detect off-target editing in treated patient-derived fibroblasts. Taken together, we have established a highly efficient pipeline for gene correction in primary fibroblasts with a favorable safety profile. This work lays a foundation for developing therapies for RDEB patients using ex vivo or in vivo base editing strategies.
Project description:CRISPR-Cas base editor technology enables targeted nucleotide alterations and is being rapidly deployed for research and potential therapeutic applications. The most widely used base editors induce DNA cytosine (C) deamination with rat APOBEC1 (rAPOBEC1) enzyme, which is targeted by a linked Cas protein-guide RNA (gRNA) complex. Previous studies of cytosine base editor (CBE) specificity have identified off-target DNA edits in human cells. Here we show that a CBE with rAPOBEC1 can cause extensive transcriptome-wide RNA cytosine deamination in human cells, inducing tens of thousands of C-to-uracil (U) edits with frequencies ranging from 0.07% to 100% in 38% - 58% of expressed genes. CBE-induced RNA edits occur in both protein-coding and non-protein-coding sequences and generate missense, nonsense, splice site, 5’ UTR, and 3’ UTR mutations. We engineered two CBE variants bearing rAPOBEC1 mutations that substantially decrease the numbers of RNA edits (reductions of >390-fold and >3,800-fold) in human cells. These variants also showed more precise on-target DNA editing and, with the majority of gRNAs tested, editing efficiencies comparable to those observed with wild-type CBE. Finally, we show that recently described adenine base editors (ABEs) can also induce transcriptome-wide RNA edits. These results have important implications for the research and therapeutic uses of base editors, illustrate the feasibility of engineering improved variants with reduced RNA editing activities, and suggest the need to more fully define and characterize the RNA off-target effects of deaminase enzymes in base editor platforms. This SuperSeries is composed of the SubSeries listed below.
Project description:CRISPR-Cas base editor technology enables targeted nucleotide alterations and is being rapidly deployed for research and potential therapeutic applications. The most widely used base editors induce DNA cytosine (C) deamination with rat APOBEC1 (rAPOBEC1) enzyme, which is targeted by a linked Cas protein-guide RNA (gRNA) complex. Previous studies of cytosine base editor (CBE) specificity have identified off-target DNA edits in human cells. Here we show that a CBE with rAPOBEC1 can cause extensive transcriptome-wide RNA cytosine deamination in human cells, inducing tens of thousands of C-to-uracil (U) edits with frequencies ranging from 0.07% to 100% in 38% - 58% of expressed genes. CBE-induced RNA edits occur in both protein-coding and non-protein-coding sequences and generate missense, nonsense, splice site, 5’ UTR, and 3’ UTR mutations. We engineered two CBE variants bearing rAPOBEC1 mutations that substantially decrease the numbers of RNA edits (reductions of >390-fold and >3,800-fold) in human cells. These variants also showed more precise on-target DNA editing and, with the majority of gRNAs tested, editing efficiencies comparable to those observed with wild-type CBE. Finally, we show that recently described adenine base editors (ABEs) can also induce transcriptome-wide RNA edits. These results have important implications for the research and therapeutic uses of base editors, illustrate the feasibility of engineering improved variants with reduced RNA editing activities, and suggest the need to more fully define and characterize the RNA off-target effects of deaminase enzymes in base editor platforms.
Project description:Adenine base editors (ABEs) with wide CRISPR compatibility and high activity improves the editing efficiency and arouses the off-target challenges as well. Here, we carried out a comprehensive evaluation of ABE8e and ABE9 induced DNA and RNA mutations in model organism rice. The whole-genome sequencing analysis on plants with rBE46b (SpCas9n-TadA8e), rBE49b (SpCas9n-TadA9), rBE50 (SpCas9n-NG-TadA8e), rBE53 (SpCas9n-NG-TadA9) reveals that the ABEs with TadA9 lead to a higher number of off-target A>G SNVs and ABEs with SpCas9n-NG lead to a higher total number of off-target SNVs. The analysis of T-DNAs (ABEs carrier) disclosed that the on-target mutations could happen before T-DNA integration to plant genomes as well as after T-DNA integration to plant genomes, while ABEs integrated into plant genomes lead to more A>G SNVs. We also detected off-target A>G RNA mutations in plants with higher expression of ABEs but not in plants with lower expression of ABEs. The off-target A>G RNA mutations tend to cluster while off-target A>G DNA mutations cluster in a very rare manner. The findings that CRISPRs, TadA variants, T-DNA integration, and ABE expression contribute ABEs’ specificity provide alternative ways to increase the specificity of ABEs.
Project description:Adenine base editors (ABEs) with wide CRISPR compatibility and high activity improves the editing efficiency and arouses the off-target challenges as well. Here, we carried out a comprehensive evaluation of ABE8e and ABE9 induced DNA and RNA mutations in model organism rice. The whole-genome sequencing analysis on plants with rBE46b (SpCas9n-TadA8e), rBE49b (SpCas9n-TadA9), rBE50 (SpCas9n-NG-TadA8e), rBE53 (SpCas9n-NG-TadA9) reveals that the ABEs with TadA9 lead to a higher number of off-target A>G SNVs and ABEs with SpCas9n-NG lead to a higher total number of off-target SNVs. The analysis of T-DNAs (ABEs carrier) disclosed that the on-target mutations could happen before T-DNA integration to plant genomes as well as after T-DNA integration to plant genomes, while ABEs integrated into plant genomes lead to more A>G SNVs. We also detected off-target A>G RNA mutations in plants with higher expression of ABEs but not in plants with lower expression of ABEs. The off-target A>G RNA mutations tend to cluster while off-target A>G DNA mutations cluster in a very rare manner. The findings that CRISPRs, TadA variants, T-DNA integration, and ABE expression contribute ABEs’ specificity provide alternative ways to increase the specificity of ABEs.
Project description:CRISPR-guided DNA base editors enable the efficient installation of targeted single-nucleotide changes. Cytosine or adenine base editors (CBEs or ABEs), which are fusions of cytidine or adenosine deaminases to CRISPR-Cas nickases, can efficiently induce DNA C-to-T or A-to-G alterations in DNA, respectively. We recently demonstrated that both the widely used CBE BE3 (harboring a rat APOBEC1 cytidine deaminase) and the optimized ABEmax editor can induce tens of thousands of guide RNA-independent, transcriptome-wide RNA base edits in human cells with high efficiencies. In addition, we showed the feasibility of creating SElective Curbing of Unwanted RNA Editing (SECURE)-BE3 variants that exhibit substantially reduced unwanted RNA editing activities while retaining robust and more precise on-target DNA editing. Here we describe structure-guided engineering of SECURE-ABE variants that not only possess reduced off-target RNA editing with comparable on-target DNA activities but are also the smallest Streptococcus pyogenes Cas9 (SpCas9) base editors described to date. In addition, we tested CBEs composed of cytidine deaminases other than APOBEC1 and found that human APOBEC3A (hA3A) cytidine deaminase CBE induces substantial transcriptome-wide RNA base edits with high efficiencies. By contrast, a previously described “enhanced” A3A (eA3A) cytidine deaminase CBE or a human activation-induced cytidine deaminase (hAID) CBE induce substantially reduced or near background levels of RNA edits. In sum, our work describes broadly useful SECURE-ABE and -CBE base editors and reinforces the importance of minimizing RNA editing activities of DNA base editors for research and therapeutic applications.
Project description:CRISPR-guided DNA base editors enable the efficient installation of targeted single-nucleotide changes. Cytosine or adenine base editors (CBEs or ABEs), which are fusions of cytidine or adenosine deaminases to CRISPR-Cas nickases, can efficiently induce DNA C-to-T or A-to-G alterations in DNA, respectively. We recently demonstrated that both the widely used CBE BE3 (harboring a rat APOBEC1 cytidine deaminase) and the optimized ABEmax editor can induce tens of thousands of guide RNA-independent, transcriptome-wide RNA base edits in human cells with high efficiencies. In addition, we showed the feasibility of creating SElective Curbing of Unwanted RNA Editing (SECURE)-BE3 variants that exhibit substantially reduced unwanted RNA editing activities while retaining robust and more precise on-target DNA editing. Here we describe structure-guided engineering of SECURE-ABE variants that not only possess reduced off-target RNA editing with comparable on-target DNA activities but are also the smallest Streptococcus pyogenes Cas9 (SpCas9) base editors described to date. In addition, we tested CBEs composed of cytidine deaminases other than APOBEC1 and found that human APOBEC3A (hA3A) cytidine deaminase CBE induces substantial transcriptome-wide RNA base edits with high efficiencies. By contrast, a previously described “enhanced” A3A (eA3A) cytidine deaminase CBE or a human activation-induced cytidine deaminase (hAID) CBE induce substantially reduced or near background levels of RNA edits. In sum, our work describes broadly useful SECURE-ABE and -CBE base editors and reinforces the importance of minimizing RNA editing activities of DNA base editors for research and therapeutic applications.
Project description:Adenine base editors (ABEs) are precise gene-editing agents that convert A:T pairs into G:C through a deoxyinosine intermediate. ABEs function most effectively when the target A is in a TA context. Deficient ABE processing of RA (R = A or G) is most evident when the target A is outside the comfortable editing window or when delivery is suboptimal. In the current study, we report directed evolution of TadA8r, a new variant of the Escherichia coli tRNA-specific adenosine deaminase (TadA) with ultra-fast deoxyadenosine deamination and no context bias.
Project description:Base editors are RNA-guided deaminases that enable site-specific nucleotide transitions. The targeting scope of these Cas-deaminase fusion proteins critically depends on the availability of a protospacer adjacent motif (PAM) at the selected genomic locus, and is limited to a window within the CRISPR-Cas R-loop where single stranded (ss)DNA is accessible to the deaminase. Here, we reason that the Cas9-HNH nuclease domain sterically constrains ssDNA accessibility, and demonstrate that omission of this domain expands the editing window. By exchanging the HNH nuclease domain with an adenosine deaminase, we furthermore engineer adenine base editor variants (HNHx-ABE) with PAM-proximally shifted editing windows. HNHx-ABEs are substantially reduced in size, and expand the targeting scope of base editors. Our finding that the HNH domain is replaceable could moreover benefit future protein engineering efforts, where Cas9 operates together with other enzyme domains.
Project description:Base editors are RNA-guided deaminases that enable site-specific nucleotide transitions. The targeting scope of these Cas-deaminase fusion proteins critically depends on the availability of a protospacer adjacent motif (PAM) at the selected genomic locus, and is limited to a window within the CRISPR-Cas R-loop where single stranded (ss)DNA is accessible to the deaminase. Here, we reason that the Cas9-HNH nuclease domain sterically constrains ssDNA accessibility, and demonstrate that omission of this domain expands the editing window. By exchanging the HNH nuclease domain with an adenosine deaminase, we furthermore engineer adenine base editor variants (HNHx-ABE) with PAM-proximally shifted editing windows. HNHx-ABEs are substantially reduced in size, and expand the targeting scope of base editors. Our finding that the HNH domain is replaceable could moreover benefit future protein engineering efforts, where Cas9 operates together with other enzyme domains.