Project description:8988T cells treated with methyl acetate or 1 mM of alpha-ketoglutarate disodium salt or 1 mM of dimethyl-alpha-ketoglutarate for 3 hours prior to rapid quenching of metabolism and extraction of metabolites in 80% methanol (-80°C) containing internal QC standards.
Project description:Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brain tumor with limited therapeutic options. Here, we investigated the potential of dimethyl alpha-ketoglutarate (DMKG) as an anti-proliferative agent against DIPG and unraveled its underlying molecular mechanisms. DMKG exhibited robust inhibition of DIPG cell proliferation, colony formation, and neurosphere growth. Transcriptomic analysis revealed substantial alterations in gene expression, with upregulated genes enriched in hypoxia-related pathways and downregulated genes associated with cell division and the mitotic cell cycle. Notably, DMKG induced G1/S phase cell cycle arrest and downregulated histone H3 lysine 27 acetylation (H3K27ac) without affecting H3 methylation levels. The inhibition of AKT and ERK signaling pathways by DMKG coincided with decreased expression of the CBP/p300 coactivator. Importantly, we identified the c-MYC-p300/ATF1-p300 axis as a key mediator of DMKG's effects, demonstrating reduced binding to target gene promoters and decreased H3K27ac levels. Depletion of c-MYC or ATF1 effectively inhibited DIPG cell growth. These findings highlight the potent anti-proliferative properties of DMKG, its impact on epigenetic modifications, and the involvement of the c-MYC-p300/ATF1-p300 axis in DIPG, shedding light on potential therapeutic strategies for this devastating disease.
Project description:The tumor suppressor p53 is mutated in the majority of human cancers, including pancreatic ductal adenocarcinoma (PDAC)1,2. Wild-type p53 accumulates in response to cellular stress and acts to regulate the expression of genes that influence cell fate and constrain tumorigenesis2. p53 also can modulate cellular metabolism3, though it remains unclear how the metabolic effects of p53 influence tumor suppression or whether the metabolic consequences of p53 loss play a role in disease maintenance. Here, we show that restoring endogenous p53 function in cancer cells derived from a mouse model of PDAC driven by oncogenic Kras and a regulatable p53 short hairpin RNA (shRNA) rewires glucose and glutamine metabolism to support the accumulation of the metabolite alpha-ketoglutarate, an obligate substrate for several enzymes that regulate chromatin methylation. p53 restoration induces transcriptional programs characteristic of pre-neoplastic differentiation, an effect that can be partially recapitulated by addition of cell permeable alpha-ketoglutarate. Consequently, enforcing alpha-ketoglutarate accumulation in p53 deficient cells by inhibiting expression of oxoglutarate dehydrogenase (Ogdh), the enzyme that consumes alpha-ketoglutarate in the tricarboxylic acid cycle, reduces tumor-initiating capacity and promotes tumor differentiation in vivo. In both mouse and human pancreatic cancer, decreasing levels of the alpha-ketoglutarate-dependent chromatin modification 5-hydroxymethylcytosine (5hmC) marks progression from prenoplastic to de-differentiated malignant lesions. p53 restoration or Ogdh suppression promotes accumulation of 5hmC specifically in differentiated tumor cells in vivo. Together, these results nominate alpha-ketoglutarate as an effector of p53-mediated tumor suppression that promotes pre-neoplastic differentiation and suppresses malignant progression.
Project description:In order to investigate the effect of Alpha-Ketoglutarate (AKG) on p-α-synuclein in substantia nigra of Parkinson's disease (PD) model mice (C57BL/6), we profiled substantia nigra from wild-type (WT), AAV-α-synuclein (α-Syn), AKG and α-Syn-AKG in male mice by RNA sequencing (RNA-seq).
Project description:In order to propagate a solid tumor, cancer cells must adapt to and survive under various tumor microenvironment (TME) stresses, such as hypoxia or lactic acidosis. To systematically identify genes that modulate cancer cell survival under stresses, we performed genome-wide shRNA screens under hypoxia or lactic acidosis. We discovered that genetic depletion of acetyl-CoA carboxylase (ACACA or ACC1) or ATP citrate lyase (ACLY) protected cancer cells from hypoxia-induced apoptosis. Additionally, loss of ACLY or ACC1 reduced levels and activities of the oncogenic transcription factor ETV4. Silencing ETV4 also protected cells from hypoxia-induced apoptosis and led to remarkably similar transcriptional responses as with silenced ACLY or ACC1, including an anti-apoptotic program. Metabolomic analysis found that while α-ketoglutarate levels decrease under hypoxia in control cells, α-ketoglutarate is paradoxically increased by hypoxia when ACC1 or ACLY are depleted. Supplementation with α-ketoglutarate rescued the hypoxia-induced apoptosis and recapitulated the decreased expression and activity of ETV4 via an epigenetic mechanism. Therefore, ACC1 and ACLY regulate the levels of ETV4 under hypoxia via increased α-ketoglutarate. These results reveal that ACC1/ACLY- α-ketoglutarate-ETV4 is a novel means by which metabolic states regulate transcriptional output for life vs. death decisions under hypoxia. Since many lipogenic inhibitors are under investigation as cancer therapeutics, our findings suggest that the use of these inhibitors will need to be carefully considered with respect to oncogenic drivers, tumor hypoxia, progression and dormancy. More broadly, our screen provides a framework for studying additional tumor cell stress-adaption mechanisms in the future.
Project description:We conducted gene expression analysis of naive and polarized macrophages from wild type C57BL6/J mice. In this project, we also compared how glutamine deprivation and production of alpha-ketoglutarate during LPS priming affects gene expression profiles in bone marrow-derived macrophages.
Project description:The neonatal mammalian heart is capable of substantial regeneration following injury through cardiomyocyte proliferation. However, this regenerative capacity is lost by postnatal (P) day 7. How to stimulate the adult cardiomyocyte to re-enter the cell cycle is still unknown. Accumulating evidence suggests that cardiomyocyte proliferation depends on its metabolic state. Due to the tight connection between the tricarboxylic acid cycle (TCA) and cell proliferation, we analyzed the TCA metabolites between P0.5 and P7 mouse hearts and found that α-ketoglutarate (α-KG) ranked first among the decreased metabolites. The intraperitoneal injection of exogenous α-KG extended the window of cardiomyocyte proliferation during heart development and promoted heart regeneration after myocardial infarction (MI) by inducing adult cardiomyocyte proliferation. This was confirmed in Ogdh-siRNA-treated mice with increased α-KG levels. Mechanistically, α-KG activates Jmjd3, a histone lysine demethylase, that decreases H3K27me3 expression and deposition of H3K4me3 at the promoters of cell cycle and structural maturation genes in cardiomyocytes. Our present study shows that α-KG promotes cardiomyocyte proliferation by Jmjd3-dependent demethylation and inactivation of H3K27me3 andH3K4me3, which is a potential therapeutic approach for treating MI and heart failure.