Interconversion between active and inactive TATA-binding protein transcription complexes in the mouse genome.
Ontology highlight
ABSTRACT: The conserved core domain of the TATA binding protein (TBP) interacts with multiple partners forming the complexes required for transcription by RNA Polymerases I, II and III. We use genetically modified mouse embryonic fibroblasts to show that many TBP core domain mutants complement loss of endogenous TBP, but this often results in a slow growth phenotype. Two TBP mutations, R188E and K243E, disrupt the TBP-BTAF1 interaction and B-TFIID complex formation. Transcriptome and ChIP-seq analyses show that loss of B-TFIID does not affect global genomic distribution of TBP, but positively or negatively affects TBP and/or RNA Polymerase II (Pol II) recruitment to a selected set of promoters. We identify a set of promoters where wild-type TBP assembles a partial inactive preinitiation complex lacking Pol II and TAF1. Our results suggest that an exchange of the B-TFIID complex in wild-type cells for TFIID in R188E and K243E mutant cells at these primed promoters recruits Pol II to activate their expression. We also observe that both Wt and mutant TBP can occupy promoters without concurrent Pol II recruitment and active transcription. Our data reveal a novel regulatory mechanism involving the formation of a partial preinitiation complex that primes the promoter for productive preinitiation complex formation in mammalian cells.
ORGANISM(S): Mus musculus
PROVIDER: GSE27908 | GEO | 2012/03/01
SECONDARY ACCESSION(S): PRJNA137823
REPOSITORIES: GEO
ACCESS DATA