Glycine Receptor Activity in β Cells Is Downregulated in Type 2 Diabetes and After High Glucose Culture
Ontology highlight
ABSTRACT: Objectives: Glycine acts in an autocrine positive feedback loop in human β cells through its ionotropic receptors (GlyRs). In type 2 diabetes (T2D), islet GlyR activity is impaired by unknown mechanisms. We sought to investigate if the GlyR dysfunction in T2D is replicated by hyperglycemia per se, and to further characterize its action in β cells and the islets. Methods: GlyR-mediated currents were measured using whole-cell patch-clamp in human β cells from donors with or without T2D, or after high glucose culture. We also correlated glycine-induced current amplitude with transcript expression levels through patch-seq. The expression of the GlyR α1, α3, and β subunit mRNA splice variants was compared between islets from donors with and without T2D, and after high glucose culture. Insulin secretion from human islets was measured in the presence or absence of the GlyR antagonist strychnine. Results: Gene expression of GlyRs was decreased in islets from T2D donors along with smaller GlyR-mediated currents in the β cells. Glycine-induced currents are also reduced in islets from donors without diabetes after 48 hours of culture in high glucose, along with reducedα1 subunit expression and increased α3 subunit expression. Glycine-evoked currents are highly heterogeneous between different β cells within and between donors; inversely correlated with donor HbA1c; and significantly correlated to the expression of 99 different transcripts. Finally, glucose-stimulated insulin secretion is decreased in the presence of strychnine.
Project description:Pancreatic islet beta cell failure causes type 2 diabetes (T2D). The IMIDIA consortium has used a strategy entailing a stringent comparative transcriptomics analysis of islets isolated enzymatically or by laser microdissection from two large cohorts of non-diabetic (ND) and T2D organ donors (OD) or partially pancreatectomized patients (PPP). This work led to the identification of a signature of genes that were differentially expressed between T2D and ND regardless of the sample type (OD or PPP). This signature includes 19 genes, of which 9 have never been previously reported to be differentially expressed in T2D islets. The PPP cohort also includes samples from individuals with impaired glucose tolerance (IGT) or recent onset diabetes associated with a pancreatic exocrine disorder (T3cD). Notably, none of the 19 signature genes of T2D islets were significantly dysregulated in islets of subjects with IGT or T3cD, suggesting that their changed expression reflects beta cell deterioration rather than a deficit preceding it.
Project description:Pancreatic islet beta cell failure causes type 2 diabetes (T2D). The IMIDIA consortium has used a strategy entailing a stringent comparative transcriptomics analysis of islets isolated enzymatically or by laser microdissection from two large cohorts of non-diabetic (ND) and T2D organ donors (OD) or partially pancreatectomized patients (PPP). This work led to the identification of a signature of genes that were differentially expressed between T2D and ND regardless of the sample type (OD or PPP). This signature includes 19 genes, of which 9 have never been previously reported to be differentially expressed in T2D islets. The PPP cohort also includes samples from individuals with impaired glucose tolerance (IGT) or recent onset diabetes associated with a pancreatic exocrine disorder (T3cD). Notably, none of the 19 signature genes of T2D islets were significantly dysregulated in islets of subjects with IGT or T3cD, suggesting that their changed expression reflects beta cell deterioration rather than a deficit preceding it.
Project description:Recent advances in the understanding of the genetics of type 2 diabetes (T2D) susceptibility have focused attention on the regulation of transcriptional activity within the pancreatic beta-cell. MicroRNAs (miRNAs) represent an important component of regulatory control, and have proven roles in the development of human disease and control of glucose homeostasis. We set out to establish the miRNA profile of human pancreatic islets and of enriched beta-cell populations, and to explore their potential involvement in T2D susceptibility. We used Illumina small RNA sequencing to profile the miRNA fraction in three preparations each of primary human islets and of enriched beta-cells generated by fluorescence-activated cell sorting. In total, 366 miRNAs were found to be expressed (i.e. >100 cumulative reads) in islets and 346 in beta-cells; of the total of 384 unique miRNAs, 328 were shared. A comparison of the islet-cell miRNA profile with those of 15 other human tissues identified 40 miRNAs predominantly expressed (i.e. >50% of all reads seen across the tissues) in islets. Several highly-expressed islet miRNAs, such as miR-375, have established roles in the regulation of islet function, but others (e.g. miR-27b-3p, miR-192-5p) have not previously been described in the context of islet biology. As a first step towards exploring the role of islet-expressed miRNAs and their predicted mRNA targets in T2D pathogenesis, we looked at published T2D association signals across these sites. We found evidence that predicted mRNA targets of islet-expressed miRNAs were globally enriched for signals of T2D association (p-values <0.01, q-values <0.1). At six loci with genome-wide evidence for T2D association (AP3S2, KCNK16, NOTCH2, SCL30A8, VPS26A, and WFS1) predicted mRNA target sites for islet-expressed miRNAs overlapped potentially causal variants. In conclusion, we have described the miRNA profile of human islets and beta-cells and provide evidence linking islet miRNAs to T2D pathogenesis. Examination of the miRNA profiles in 3 preparations of isolated pancreatic islets and 3 preparations of FACS-enriched pancreatic beta-cells
Project description:Pancreatic islet (dys)function is central to glucose homeostasis and type 2 diabetes (patho)physiology. Human islets consist of multiple endocrine (alpha, beta, delta, gamma), endothelial, and resident/inflitrating immune cells whose coordinated functions modulate glucose mobilization or disposal. Single cell transcriptome profiling (scRNA-seq) studies have been applied to dissect human islet cellular heterogeneity, identify islet cell (sub)populations, and define their molecular repertoire. However, precise understanding of cell type-specific alterations in type 2 diabetic vs. non-diabetic individuals is lacking, due in part to the limited number of individuals or single cell transcriptomes per individual profiled for comparison. Here, we create a comprehensive single cell transcriptome atlas of 245,878 human islet cells from 48 individuals spanning non-diabetic (ND), pre-diabetic (PD), and type 2 diabetic (T2D) states and matched for sex, age, and ancestry and define marker gene sets that are robustly expressed across disease states for each of the 14 cell types identified. We observe significant decreases in the number of beta cells sampled from T2D vs. ND or PD donors. Two of eight putative beta cell subpopulations, with ‘high functioning’ and ‘senescent’ cell gene signatures, increase and decrease in T2D donor islets, respectively. Importantly, we identify 511 differentially expressed genes in beta cells from T2D vs. ND donors. This includes monogenic and type 2 diabetes effector genes, such as HNF1A, DGKB, ST6GAL1, and FXYD2, for which genetic and environmental effects on their expression is concordant. Human beta cell and islet knockdown of selected newly-identified down-regulated genes impairs beta cell viability or function. Together, this study provides new and robust, cell type-resolved insights on the cellular and molecular changes in healthy vs. diabetic human islets and represents a valuable resource to the islet biology and type 2 diabetes communities.
Project description:Background: Tetraspanin-7 (Tspan7) is an islet autoantigen involved in autoimmune type 1 diabetes and known to regulate beta-cell L-type Ca2+ channel activity. However, the role of Tspan7 in pancreatic beta-cell function is not yet fully understood. Methods: Histological analyses were conducted using immunostaining. Whole-body metabolism was tested using glucose tolerance test. Islet hormone secretion was quantified using static batch incubation or dynamic perifusion. Beta-cell transmembrane currents, electrical activity and exocytosis were measured using whole-cell patch-clamping and capacitance measurements. Gene expression was studied using mRNA-sequencing and quantitative PCR. Results: Tspan7 is expressed in insulin-containing granules of pancreatic beta-cells. Tspan7-knockout mice (Tspan7 y/- mouse) exhibit reduced body weight and ad libitum plasma glucose but normal glucose tolerance. Tspan7y/- islets have normal insulin content and glucose- or tolbutamide-stimulated insulin secretion. Depolarisation-triggered Ca2+ current was enhanced in Tspan7y/- beta-cells, but beta-cell electrical activity and depolarisation-evoked exocytosis were unchanged suggesting that exocytosis was less sensitive to Ca2+. TSPAN7 knockdown (KD) in human pseudo-islets led to a significant reduction in high K+-stimulated insulin secretion. Transcriptomic analyses show that TSPAN7 KD in human pseudo-islets correlated with changes in genes involved in hormone secretion, apoptosis and ER stress. Consistent with rodent beta-cells, exocytotic Ca2+ sensitivity was reduced in a human beta cell line (EndoC-bH1) following Tspan7 KD. Conclusion: Tspan7 is involved in the regulation of Ca2+-dependent exocytosis in beta-cells. Its function is more significant in human beta-cells than their rodent counterparts
Project description:Background: Tetraspanin-7 (Tspan7) is an islet autoantigen involved in autoimmune type 1 diabetes and known to regulate beta-cell L-type Ca2+ channel activity. However, the role of Tspan7 in pancreatic beta-cell function is not yet fully understood. Methods: Histological analyses were conducted using immunostaining. Whole-body metabolism was tested using glucose tolerance test. Islet hormone secretion was quantified using static batch incubation or dynamic perifusion. Beta-cell transmembrane currents, electrical activity and exocytosis were measured using whole-cell patch-clamping and capacitance measurements. Gene expression was studied using mRNA-sequencing and quantitative PCR. Results: Tspan7 is expressed in insulin-containing granules of pancreatic beta-cells. Tspan7-knockout mice (Tspan7 y/- mouse) exhibit reduced body weight and ad libitum plasma glucose but normal glucose tolerance. Tspan7y/- islets have normal insulin content and glucose- or tolbutamide-stimulated insulin secretion. Depolarisation-triggered Ca2+ current was enhanced in Tspan7y/- beta-cells, but beta-cell electrical activity and depolarisation-evoked exocytosis were unchanged suggesting that exocytosis was less sensitive to Ca2+. TSPAN7 knockdown (KD) in human pseudo-islets led to a significant reduction in high K+-stimulated insulin secretion. Transcriptomic analyses show that TSPAN7 KD in human pseudo-islets correlated with changes in genes involved in hormone secretion, apoptosis and ER stress. Consistent with rodent beta-cells, exocytotic Ca2+ sensitivity was reduced in a human beta cell line (EndoC-H1) following Tspan7 KD. Conclusion: Tspan7 is involved in the regulation of Ca2+-dependent exocytosis in beta-cells. Its function is more significant in human beta-cells than their rodent counterparts
Project description:Dedifferentiation of pancreatic beta cells may reduce islet function in type 2 diabetes (T2D). However, the prevalence, plasticity and functional consequences of this cellular state remain unknown. We employed single-cell RNAseq to detail the maturation program of alpha and beta cells during human ontogeny. We show that although both alpha and beta cells mature in part by repressing non-endocrine genes, alpha-cells retain hallmarks of an immature state, while beta-cells attain a full beta-cell specific gene expression program. In islets from T2D donors, both alpha- and beta-cells return to a less mature expression profile, de-repressing the juvenile genetic program and exocrine genes while increasing expression of exocytosis, inflammation and stress response signaling pathways. These changes support the increased proportion of beta-cells displaying suboptimal function observed in T2D islets. These findings provide new insights into the molecular program underlying islet cell maturation during human ontogeny and the loss of transcriptomic maturity that occurs in islets of type 2 diabetics.
Project description:Here we harnessed the potential of expression arrays in 89 human pancreatic islet donors (different levels of blood glucose (HbA1c)) to identify genes regulated in this relevant tissue for type 2 diabetes (T2D). Islets from cadaver donors were provided by the Nordic Islet Transplantation Programme (www.nordicislets.org), Uppsala University. The microarrays were performed using GeneChipM-BM-. Human Gene 1.0 ST whole transcript according to Affymetrix standard protocol.
Project description:Objective Notch signaling is re-activated in β cells from obese mice, and is causal to β cell dysfunction. Notch activity is determined in part by expression of transmembrane ligand availability in a neighboring cell. We hypothesized that β cell expression of Jagged1 determines the maladaptive Notch response and resultant β cell dysfunction in obese mice. Methods We assessed expression of Notch pathway components in diet-induced obese (DIO) or leptin receptor-deficient (db/db) mice, and performed single cell RNA sequencing (scRNAseq) in islets from patients with and without type 2 diabetes (T2D). We generated and performed glucose tolerance testing in inducible, β cell-specific Jagged1 gain-of- and loss-of-function mice. We also tested effects of monoclonal neutralizing antibodies to Jagged1 in glucose-stimulated insulin secretion (GSIS) assays in isolated islets. Results Jag1 was the only Notch ligand that tracked with increased Notch activity in DIO and db/db mice. Consistently, JAG1 tracked with Notch activity in metabolically inflexible β cells enriched in patients with T2D. Neutralizing antibodies to block Jagged1 in islets isolated from DIO and db/db mice potentiated GSIS ex vivo. To demonstrate if β cell Jagged1 is sufficient to cause glucose tolerance in vivo, we generated inducible β cell-specific Jag1 transgenic mice (β-Jag1TG), which showed impaired glucose intolerance due to reduced GSIS. However, β cell-specific Jagged1 loss-of-function (β-Jag1KO) did not protect against HFD-induced insulin secretory defects or glucose intolerance. Conclusions Jagged1 is increased in islets from obese mice and in patients with T2D, and neutralizing Jagged1 antibodies lead to improved GSIS, suggesting that inhibition of Jagged1-Notch signaling may have therapeutic benefit. However, genetic loss-of-function experiments suggest that β cells are not a likely source of the Jagged1 signal.
Project description:Relative beta cell deficit and increased beta cell apoptosis are hallmarks of type 2 diabetes (T2D). The Insulin/Insulin Growth Factor (Igf) signaling pathway is an established regulator of beta cell survival and is found downregulated in human T2D islets. The Insulin Receptor Substrate 2 (Irs2) plays a central role in the coordination of this pathway in beta cells. Thus, Irs2 knockout mice (Irs2 -/-) exhibit increased beta cell apoptosis that leads to a progressive decline of beta cell mass and hyperglycaemia. In this study, we sought to determine whether the anti-diabetic compound sodium tungstate could prevent the onset of diabetes in Irs2 -/- mice. Oral administration of tungstate resulted in an overall improvement in whole-body glucose tolerance in Irs2 -/- mice which correlated with increased beta cell mass. Enhanced beta cell mass was due to a dramatic reduction of beta cell apoptosis without changes in proliferation. Whole genome gene profiling analysis of islets isolated from treated Irs2 -/- mice confirmed a broad impact of tungstate on cell death pathways. Mechanistically, tungstate induced Erk1/2 phosphorylation in islets in vitro and, in agreement, treated Irs2 -/- islets exhibited increased basal Erk1/2 phosphorylation. Tungstate also downregulated expression of apoptosis-related genes in Irs2-/- islets in vitro, uncovering a direct effect of this compound in islets. All together, our data demonstrate that tungstate can restore beta cell mass and glucose homeostasis in a context of deficient Insulin/Igf signaling. This study underscores the importance of developing strategies specifically designed to arrest beta cell apoptosis as a means to prevent progressive beta cell failure in diabetes. 10-week old WT and Irs2 -/- mice were randomly divided into two treatment group, in a total of 4 experimental groups. For 21 days one group received distilled water as drinking water (untreated group) whilst the other received ad libitum a solution of 2mg/ml of sodium tungstate in distilled water (treated group). For each experimental group 2 independent samples were analysed, in a total of 8 samples.