Multichrome encoding-based multiplexed, spatially resolved imaging reveals single-cell RNA epigenetic modifications heterogeneity
Ontology highlight
ABSTRACT: Understanding the heterogeneity of epigenetic modifications within single cells is pivotal for unraveling the nature of the complexity of gene expression and cellular function. In this study, we have developed a strategy based on multichrome encoding and “AND” Boolean logic recognition for multiplexed, spatially resolved imaging of single-cell RNA epigenetic modifications, termed as PRoximity Exchange-assisted Encoding of Multichrome (PREEM). Through the implementation of this strategy, we can now map the expression and nuclear distribution of multiple site-specific RNA epigenetic modifications at the single-molecule resolution level in single-cells, and reveal the previously unknown heterogeneity. Notably, we demonstrate how these patterns change after treatment with various drugs. Moreover, cyclic imaging with tailed DNA self-assembly further suggest the scalability and adaptability of PREEM’s design. As an innovative epigenetic modification imaging tool, PREEM not only broadens the horizons of single-cell epigenetics research, enabling joint analysis of multiple targets beyond the limitations of imaging channels, but also reveals cell-to-cell variability, thereby enhancing our capacity to explore cellular functions.
ORGANISM(S): Homo sapiens
PROVIDER: GSE280639 | GEO | 2024/12/23
REPOSITORIES: GEO
ACCESS DATA