Programmed fluctuations in sense/anti-sense transcript ratios drive sexual differentiation in Schizosaccharomyces pombe
Ontology highlight
ABSTRACT: Strand specific RNA sequencing of S. pombe revealed a highly structured programme of ncRNA expression at over 600 loci. Waves of antisense transcription accompanied sexual differentiation. A substantial proportion of ncRNA arose from mechanisms previously considered to be largely artefactual, including improper 3’ termination and bi-directional transcription. Constitutive induction of the entire spk1+, spo4+, dis1+ and spo6+ antisense transcripts from an integrated, ectopic, locus disrupted their respective meiotic functions. This ability of antisense transcripts to disrupt gene function when expressed in trans suggests that cis production at native loci during sexual differentiation may also control gene function. Consistently, insertion of a marker gene adjacent to the dis1+ antisense start site mimicked ectopic antisense expression in reducing the levels of this microtubule regulator and abolishing the microtubule-dependent “horsetail” stage of meiosis. Antisense production had no impact at any of these loci when the RNAi machinery was removed. Thus, far from being simply ‘genome chatter’, this extensive ncRNA landscape constitutes a fundamental component in the controls that drive the complex programme of sexual differentiation in S. pombe.
ORGANISM(S): Schizosaccharomyces pombe
PROVIDER: GSE28113 | GEO | 2011/12/20
SECONDARY ACCESSION(S): PRJNA139831
REPOSITORIES: GEO
ACCESS DATA