Matrix stiffness enhances cancer-macrophage interactions and M2-like macrophage accumulation in the breast tumor microenvironment
Ontology highlight
ABSTRACT: We used single-cell RNA sequencing to investigate the differences in the transcriptional landscapes between stiff and compliant MMTV-PyMT mouse mammary tumors. We found similar compositions of cancer and stromal subpopulations in compliant and stiff tumors but differential intercellular communication and a significantly higher concentration of tumor-promoting, M2-like macrophages in the stiffer tumor microenvironments.
Project description:The objective of this study was to determine the effect of Thyroid Hormone Responsive Protein Spot14 (Spot14) loss on the gene expression profiles of tumors from MMTV-Polyomavirus middle-T antigen (PyMT) mice. MMTV-PyMT/S14-heterozygous mice were crossed with S14-heterozygous mice and 1 cm tumors from MMTV-PyMT control (wild-type S14) or MMTV-PyMT/S14-null offspring were profiled using Affymetrix gene arrays. Tumor latency was not different between groups; however, tumors lacking S14 grew significantly slower than control tumors. Loss of S14 also decreased the levels of de novo synthesized fatty acids in mammary tumors. In additional studies, performed on MMTV-Neu mice, we found that S14 overexpression was associated with increased tumor cell proliferation and elevated levels of tumor fatty acids. Gene expression profiling revealed that S14 loss and overexpression in mouse mammary tumors altered pathways associated with proliferation and metabolism. This study provides important information about the role of S14 in mammary tumorigenesis and tumor metabolism. Microarray analysis was performed on 4 mammary tumors from MMTV-PyMT mice and 4 tumors from MMTV-PyMT/S14-null mice.
Project description:Cancer tissues are stiffer than normal tissues. Carcinogenesis stiffens the extracellular matrix (ECM) of cancerous tissues, to which cancer cells respond by activating transcription factors. We show that activating transcription factor 5 (ATF5), highly expressed in tumors, is activated by ECM stiffness and promotes the proliferation of cancer cells, including that of pancreatic cancer cells (KP4) and lung cancer cells (A549). In addition, ATF5 suppressed the expression of early growth response 1 (EGR1), thereby accelerating cancer cell proliferation. Stiff ECMs trigger the JAK-MYC pathway which activates ATF5.
Project description:Loss of E2F transcription factos alters metastatic capacity of MMTV-PyMT tumors. We used microarrays to futher characterize the effects of E2F loss on mammary tumorigenesis in MMTV-PyMT mice.
Project description:The objective of this study was to determine the effect of Thyroid Hormone Responsive Protein Spot14 (Spot14) loss on the gene expression profiles of tumors from MMTV-Polyomavirus middle-T antigen (PyMT) mice. MMTV-PyMT/S14-heterozygous mice were crossed with S14-heterozygous mice and 1 cm tumors from MMTV-PyMT control (wild-type S14) or MMTV-PyMT/S14-null offspring were profiled using Affymetrix gene arrays. Tumor latency was not different between groups; however, tumors lacking S14 grew significantly slower than control tumors. Loss of S14 also decreased the levels of de novo synthesized fatty acids in mammary tumors. In additional studies, performed on MMTV-Neu mice, we found that S14 overexpression was associated with increased tumor cell proliferation and elevated levels of tumor fatty acids. Gene expression profiling revealed that S14 loss and overexpression in mouse mammary tumors altered pathways associated with proliferation and metabolism. This study provides important information about the role of S14 in mammary tumorigenesis and tumor metabolism.
Project description:Transcriptional profiling of miRNA levels in mammary tumors from 18 [PyMT x AKXD]F1 sublines. The PyMT strain was FVB/N-TgN(MMTV-PyVT)634Mul.
Project description:We aimed to understand the transcriptome patterns of organ-derived cancer cell isolates from MMTV-PyMT mice. Tissues from primary tumors and organs harboring distal metastases were harvested from cancer bearing female mice. Although metastatic progression from primary tumors to lung tissue is well studied in the MMTV-PyMT model, metastases to other distal organs and the significance of intratumor heterogeneity across metastases from distal organs remain unclear. To gain insight, we established an array of metastatic cell lines harvested from the MMTV-PyMT breast cancer mouse model. Sequencing at bulk and single-cell level were performed and used to examine the effects of cell heterogeneity on metastases and organ tropism
Project description:We undertook mRNA microarray and gene ontology analyses to screen out substrate stiffness-dependent genes. Total mRNA were extracted from E17 cortical neurons grown on soft or stiff substrates at 5 or 16 hr time points. We identified 114 differentially-expressed mRNA transcripts in cells grown on 0.1 kPa and 20 kPa gels at the 5 hr time-point. Among them, 66 were upregulated in 0.1 kPa gel cultures and the remainder were downregulated (compared to cells grown on stiffer substrates). The expressions of three endocytic genes (Cltc, Dab2, and Myo6) and four adhesion genes(Vcl, Robo2, Nrcam, and Cad11) were confirmed by QGP and smRNA FISH.
Project description:Purpose: The goals of this study are to compare transcriptome (RNA-seq) differences between wild type and mutant Bad using MMTV-PyMT mouse breast cancer model. Methods: MMTV-PyMT breast cancer model tumors samples (6 independent mice for each genotype) were RNA-sequenced. Reads quality control and alignment to reference genome was done using fastp and STAR aligner respectively. Differentially expressed genes (DEGs) were computed using DESeq2.
Project description:Tri-PyMT cell is a breast tumor cell line established from Tri-PyMT (MMTV-PyMT/fsp1-Cre/Rosa26-RGFP) primary breast tumors. The cells switch from RFP+ to GFP+ during epithelial to mesenchymal transition (EMT). Differential expressed genes between EMT and non-EMT tumor cells will reveal interesting targets for anti-EMT approaches.