Seasonal Changes in Patterns of Gene Expression in Avian Song Control Brain Regions
Ontology highlight
ABSTRACT: Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by exposing Gambel’s white-crowned sparrows to season-appropriate cues and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. Supporting our hypothesis, only 59 of the 363 genes of interest were found to vary by more than |1.5| fold in expression in both nuclei, while 132 gene expression changes were HVC specific and 172 genes were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity.
ORGANISM(S): Zonotrichia leucophrys gambelii Taeniopygia guttata
PROVIDER: GSE28347 | GEO | 2012/10/01
SECONDARY ACCESSION(S): PRJNA139455
REPOSITORIES: GEO
ACCESS DATA