Transcriptome analysis of cardiac tissues from mice subjected to SD model with oxygen therapy
Ontology highlight
ABSTRACT: Adequate sleep is essential for relieving stress and rejuvenating the mind; however, undesirable physiological and pathological responses resulting from sleep insufficiency or sleep deprivation (SD) are becoming increasingly common. However, the influence of sleep deficiency on gut microbiota and microbiota-associated human diseases, especially on cardiac diseases remain controversial. Here, we constructed the experimental SD model in mice and found it significantly resulted in weakness, depression-like behaviors, and multiple organs dysfunction. Intriguingly, SD mice developed pathogenic cardiac hypertrophy and fibrosis with poor ejection fraction as well as fractional shortening. 16s rRNA sequencing demonstrated that SD-induced the pathogenic effects of gut microbiota, which was also observed in mice received by fecal microbe from SD mice in fecal microbiota transplantation (FMT) assays. Next, we investigated the therapeutic effects and underlying mechanisms of oxygen therapy in gut microbiota-associated cardiac fibrosis and dysfunction. The environment of 30% oxygen concentration effectively ameliorated the pathological effects on cardiac function. Transcriptome data also found oxygen therapy targeted several hypoxia-dependent pathways and suppressed cardiac collagen production. In conclusion, these results indicated the importance of sufficient sleep in gut microbiota and may represent a potential therapeutic strategy of oxygen environment exerts protective effects in sleepless sufferings through gut microbiota.
ORGANISM(S): Mus musculus
PROVIDER: GSE284746 | GEO | 2025/03/25
REPOSITORIES: GEO
ACCESS DATA