Actin polymerization by WASp limits nuclear envelope rupture and inflammation in macrophages I
Ontology highlight
ABSTRACT: Mutations in the immune-specific actin regulator WASp induce a proinflammatory state in myeloid cells, whose underlying causes remain poorly defined. Here, we applied microfabricated tools that mimic tissue mechanical forces to explore the role of WASp in connecting mechano-sensing to the activation of inflammatory responses in macrophages. We show that WASp-deficient macrophages carry nuclear structure alterations and undergo increased blebbing and nuclear rupture when exposed to mechanical confinement. High-resolution imaging indicates that WASp drives the formation of protective perinuclear actin structures in response to confinement. Functionally, WASp null macrophages respond to mechanical confinement by inducing a transcriptional profile consistent with the release of immunogenic DNA in the cytosol. The proinflammatory state of mechanically confined WASp-deficient macrophages depends, in part, on the cGAS-STING pathway of cytosolic DNA sensing. Together, these data uncover a WASp-dependent mechanism to restrict activation of inflammatory signalling in tissue macrophages and provide hints to target unabated inflammation in Wiskott-Aldrich Syndrome.
ORGANISM(S): Homo sapiens
PROVIDER: GSE285174 | GEO | 2024/12/25
REPOSITORIES: GEO
ACCESS DATA