TL1A deficiency attenuates osteoarthritis by regulating oxidative stress-induced senescence in articular chondrocytes [II]
Ontology highlight
ABSTRACT: Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by progressive cartilage degradation, chronic inflammation, and chondrocyte senescence. Tumor necrosis factor-like cytokine 1A (TL1A), a member of the TNF superfamily, has recently been implicated in regulating inflammatory processes and tissue remodeling. However, its precise role in OA pathogenesis remains incompletely understood. In this study, we investigated the impact of TL1A deficiency on OA progression and its underlying mechanism with a focus on oxidative stress-induced chondrocyte senescence.
Project description:Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by progressive cartilage degradation, chronic inflammation, and chondrocyte senescence. Tumor necrosis factor-like cytokine 1A (TL1A), a member of the TNF superfamily, has recently been implicated in regulating inflammatory processes and tissue remodeling. However, its precise role in OA pathogenesis remains incompletely understood. In this study, we investigated the impact of TL1A deficiency on OA progression and its underlying mechanism with a focus on oxidative stress-induced chondrocyte senescence.
Project description:Cartilage destruction in osteoarthritis (OA) results from disturbed chondrocyte metabolism. Here, we used microarrays to show that TGF alpha and CCL2 are simultaneously upregulated in a rat model of OA and cooperate to drive cartilage degradation. The goals of the experiments included here were to a) characterize gene expression in knee joint articular chondrocytes at various stages of development of OA (2 and 8 weeks after surgical induction of OA), and b) to establish trends in gene expression among groups of genes related to the TGF alpha-EGFR axis, over time, in OA. The model chosen to study these results has been previously validated (Appleton, CT et al, 2007, Arthritis Rheum) and used to describe similar gene expression results at a different time point (4 weeks) after induction of OA. The rat model of OA involves surgical destabilization of the knee joint, followed by forced low-intensity mobilization over several weeks; a sham surgery is used as the control (representing a healthy non-OA knee joint) wherein a surgical incision is made but not structural (i.e. ligamentous) modification is made to the joint. Altogether, our data indicate that TGF and CCL2 cooperate to drive cartilage degradation in osteoarthritis. A total of 12 samples were analyzed. 3 replicates were used per condition: OA surgery at 2 weeks, OA surgery at 8 weeks, Sham (control) surgery at 2 weeks and Sham surgery at 8 weeks. Expression of OA samples was assessed relaitve to Sham (control) expression levels.
Project description:As the unique cell type in articular cartilage, chondrocyte senescence is a crucial cellular event contributing to osteoarthritis development. Here we show that clathrin-mediated endocytosis and activation of Notch signaling promotes chondrocyte senescence and osteoarthritis development, which is negatively regulated by myosin light chain 3. Myosin light chain 3 (MYL3) protein levels decline sharply in senescent chondrocytes of cartilages from model mice and osteoarthritis (OA) patients. Conditional deletion of Myl3 in chondrocytes significantly promoted, whereas intra-articular injection of adeno-associated virus overexpressing MYL3 delayed, OA progression in male mice. MYL3 deficiency led to enhanced clathrin-mediated endocytosis by promoting the interaction between myosin VI and clathrin, further inducing the internalization of Notch and resulting in activation of Notch signaling in chondrocytes. Pharmacologic blockade of clathrin-mediated endocytosis-Notch signaling prevented MYL3 loss-induced chondrocyte senescence and alleviated OA progression in mice. Our results establish a previously unknown mechanism essential for cellular senescence and provide a potential therapeutic direction for OA.
Project description:Cartilage destruction in osteoarthritis (OA) results from disturbed chondrocyte metabolism. Here, we used microarrays to show that TGF alpha and CCL2 are simultaneously upregulated in a rat model of OA and cooperate to drive cartilage degradation. The goals of the experiments included here were to a) characterize gene expression in knee joint articular chondrocytes at various stages of development of OA (2 and 8 weeks after surgical induction of OA), and b) to establish trends in gene expression among groups of genes related to the TGF alpha-EGFR axis, over time, in OA. The model chosen to study these results has been previously validated (Appleton, CT et al, 2007, Arthritis Rheum) and used to describe similar gene expression results at a different time point (4 weeks) after induction of OA. The rat model of OA involves surgical destabilization of the knee joint, followed by forced low-intensity mobilization over several weeks; a sham surgery is used as the control (representing a healthy non-OA knee joint) wherein a surgical incision is made but not structural (i.e. ligamentous) modification is made to the joint. Altogether, our data indicate that TGF and CCL2 cooperate to drive cartilage degradation in osteoarthritis.
Project description:Chondrocyte senescence underlies osteoarthritis (OA). However, the pathogenesis of chondrocyte senescence remains largely unclear. Here we report that TRIM15 is a critical regulator in chondrocyte senescence. TIRM15 is highly expressed in chondrocytes of senescent cartilage from human OA patients and aged mice. Using gain- and loss-of-function studies, we further identify that TRIM15 facilitates chondrocyte senescence. Notably, conditional deletion of TRIM15 in chondrocytes severely impairs skeletal growth, partially due to the fact that embryonic chondrocyte senescence is disturbed. Compared with Col2a1-CreERT2/TRIM15flox/flox mice, TRIM15flox/flox mice exhibits accelerated OA phenotype, increased senescence markers and senescence-associated secretory phenotype (SASP) during aging. Mechanistically, TRIM15 binds with YAP and directly mediates K48-linked YAP ubiquitination at K254, which interrupts the interaction between YAP and AMOT, leading to enhanced YAP nuclear translocation. Intra-articular injection of AAV5-Trim15 shRNA decelerates OA progression in mice. Collectively, these findings indicate that targeting TRIM15 reshapes aging cartilage microenvironment and protects against OA.
Project description:Articular cartilage is deprived of blood vessels and nerves, and the only cells residing in this tissue are chondrocytes. The molecular properties of the articular cartilage and the architecture of the extracellular matrix demonstrate a complex structure that differentiates on the depth of tissue. Osteoarthritis (OA) is a degenerative joint disease, the most common form of arthritis, affecting the whole joint. It is associated with ageing and affects the joints that have been continually stressed throughout life including the knees, hips, fingers, and lower spine region. OA is a multifactorial condition of joint characterised by articular cartilage loss, subchondral bone sclerosis, and inflammation leading to progressive joint degradation, structural alterations, loss of mobility and pain. Articular cartilage biology is well studied with a focus on musculoskeletal diseases and cartilage development. However, there are relatively few studies focusing on zonal changes in the cartilage during osteoarthritis.
Project description:Osteoarthritis (OA) is a prevalent degenerative disease, which involves progressive and irreversible destruction of cartilage matrix. Despite efforts to reconstruct cartilage matrix in osteoarthritic joints, it has been a difficult task as adult cartilage exhibits marginal repair capacity. Here we report the identification of tankyrase as a regulator of the cartilage anabolism axis based on systems-level factor analysis of mouse reference populations. Tankyrase inhibition drives the expression of a cartilage-signature matrisome and elicits a transcriptomic pattern that is inversely correlated with OA progression. Furthermore, tankyrase inhibitors ameliorate surgically-induced OA in mice, and stem cell transplantation coupled with tankyrase knockdown results in superior regeneration of cartilage lesions. Mechanistically, the pro-regenerative features of tankyrase inhibition are mainly triggered by uncoupling SOX9 from a poly(ADP-ribosyl)ation (PARylation)-dependent protein degradation pathway. Our findings provide insights into the development of future OA therapies aimed at reconstruction of articular cartilage.
Project description:Osteoarthritis (OA) is a degenerative joint disease with a substantial health economic burden. There is no current treatment; instead, disease management targets the main symptoms (pain and stiffness) and culminates in joint replacement surgery. OA is a disease of cartilage degeneration, but the molecular changes leading to the development of OA are still poorly understood. In this study we compare methylation, gene transcription and protein abundance at the genome-wide level in individually-matched samples of chondrocytes extracted from affected and relatively healthy articular cartilage across 12 OA patients undergoing total knee replacement. Integration analysis highlights genes that are consistently affected at multiple levels, including AQP1, CLEC3B and COL1A1, and also relevant biological pathways such as extracellular matrix organization, collagen catabolism and proteolysis. Collectively these results provide a first view of the comprehensive molecular landscape underpinning OA development and point to potential therapeutic avenues.