An inherited predisposition allele promotes gastric cancer via enhancing deubiquitination-mediated activation of epithelial-to-mesenchymal transition signaling [CUT&Tag]
Ontology highlight
ABSTRACT: Genome-wide human genetic studies have identified inherited cis-regulatory loci variants that predispose to cancers. However, the mechanisms by which these germline variants influence cancer progression, particularly through gene expression and proteostasis control, remain unclear. By analyzing genomic data from a gastric cancer (GC) case-control study (2,117 individuals), focusing on the ubiquitin-specific protease (USP) family, we identify the single nucleotide polymorphism (SNP) rs72856331 (G>A) in the promoter region of the proto-oncogene USP47 as a susceptibility allele for GC (OR = 0.78, P = 0.015). Mechanistically, the risk allele G is associated with enhanced USP47 expression, mediated by altered recruitment of the transcription factor GLI3 and changes in the epigenetic status at promoter. CRISPR/Cas9-mediated single-nucleotide conversion into risk allele G results in increased GLI3 binding and subsequent USP47 upregulation. The depletion of GLI3 results in a reduction of cancer-related phenotypes, similar to those observed following USP47 knockdown. Furthermore, we identify Snai1 as a deubiquitination target of USP47, explaining USP47-dependent activation of epithelial-mesenchymal transition pathway and tumor progression. Our findings identify a pivotal genetic predisposition that implicates the perturbation of transcription and proteostasis programs in GC, offering insights for novel prevention and therapeutic avenues for genetically stratified patients.
ORGANISM(S): Homo sapiens
PROVIDER: GSE286484 | GEO | 2025/03/18
REPOSITORIES: GEO
ACCESS DATA