Project description:Specific regulation of target genes by transforming growth factor-β (TGF-β) in a given cellular context is determined in part by transcription factors and cofactors that interact with the Smad complex. In this study, we determined Smad2 and Smad3 (Smad2/3) binding regions in the promoters of known genes in HepG2 hepatoblastoma cells, and we compared them with those in HaCaT epidermal keratinocytes to elucidate the mechanisms of cell type- and context-dependent regulation of transcription induced by TGF-β. Our results show that 81% of the Smad2/3 binding regions in HepG2 cells were not shared with those found in HaCaT cells. Hepatocyte nuclear factor 4α (HNF4α) is expressed in HepG2 cells but not in HaCaT cells, and the HNF4α-binding motif was identified as an enriched motif in the HepG2-specific Smad2/3 binding regions. Chromatin immunoprecipitation sequencing analysis of HNF4α binding regions under TGF-β stimulation revealed that 32.5% of the Smad2/3 binding regions overlapped HNF4α bindings. MIXL1 was identified as a new combinatorial target of HNF4α and Smad2/3, and both the HNF4α protein and its binding motif were required for the induction of MIXL1 by TGF-β in HepG2 cells. These findings generalize the importance of binding of HNF4α on Smad2/3 binding genomic regions for HepG2-specific regulation of transcription by TGF-β and suggest that certain transcription factors expressed in a cell type-specific manner play important roles in the transcription regulated by the TGF-β-Smad signaling pathway.
Project description:Hepatocyte nuclear factor 4 alpha (HNF4alpha), a member of the nuclear receptor superfamily, is essential for liver function and is linked to several diseases including diabetes, hemophilia, atherosclerosis, and hepatitis. Although many DNA response elements and target genes have been identified for HNF4alpha, the complete repertoire of binding sites and target genes in the human genome is unknown. Here, we adapt protein binding microarrays (PBMs) to examine the DNA-binding characteristics of two HNF4alpha species (rat and human) and isoforms (HNF4alpha2 and HNF4alpha8) in a high-throughput fashion. We identified approximately 1400 new binding sequences and used this dataset to successfully train a Support Vector Machine (SVM) model that predicts an additional approximately 10,000 unique HNF4alpha-binding sequences; we also identify new rules for HNF4alpha DNA binding. We performed expression profiling of an HNF4alpha RNA interference knockdown in HepG2 cells and compared the results to a search of the promoters of all human genes with the PBM and SVM models, as well as published genome-wide location analysis. Using this integrated approach, we identified approximately 240 new direct HNF4alpha human target genes, including new functional categories of genes not typically associated with HNF4alpha, such as cell cycle, immune function, apoptosis, stress response, and other cancer-related genes.We report the first use of PBMs with a full-length liver-enriched transcription factor and greatly expand the repertoire of HNF4alpha-binding sequences and target genes, thereby identifying new functions for HNF4alpha. We also establish a web-based tool, HNF4 Motif Finder, that can be used to identify potential HNF4alpha-binding sites in any sequence.
Project description:AIM:To uncover the role of hepatocyte nuclear factor 4 alpha (HNF4?) in regulating hepatic expression of microRNAs. METHODS:Microarray and real-time PCR were used to determine hepatic expression of microRNAs in young-adult mice lacking Hnf4? expression in liver (Hnf4?-LivKO). Integrative genomics viewer software was used to analyze the public chromatin immunoprecipitation-sequencing datasets for DNA-binding of HNF4?, RNA polymerase-II, and histone modifications to loci of microRNAs in mouse liver and human hepatoma cells. Dual-luciferase reporter assay was conducted to determine effects of HNF4? on the promoters of mouse and human microRNAs as well as effects of microRNAs on the untranslated regions (3'UTR) of two genes in human hepatoma cells. RESULTS:Microarray data indicated that most microRNAs remained unaltered by Hnf4? deficiency in Hnf4?-LivKO mice. However, certain liver-predominant microRNAs were down-regulated similarly in young-adult male and female Hnf4?-LivKO mice. The down-regulation of miR-101, miR-192, miR-193a, miR-194, miR-215, miR-802, and miR-122 as well as induction of miR-34 and miR-29 in male Hnf4?-LivKO mice were confirmed by real-time PCR. Analysis of public chromatin immunoprecipitation-sequencing data indicates that HNF4? directly binds to the promoters of miR-101, miR-122, miR-194-2/miR-192 and miR-193, which is associated with histone marks of active transcription. Luciferase reporter assay showed that HNF4? markedly activated the promoters of mouse and human miR-101b/miR-101-2 and the miR-194/miR-192 cluster. Additionally, miR-192 and miR-194 significantly decreased activities of luciferase reporters for the 3'UTR of histone H3F3 and chromodomain helicase DNA binding protein 1 (CHD1), respectively, suggesting that miR-192 and miR-194 might be important in chromosome remodeling through directly targeting H3F3 and CHD1. CONCLUSION:HNF4? is essential for hepatic basal expression of a group of liver-enriched microRNAs, including miR-101, miR-192, miR-193a, miR-194 and miR-802, through which HNF4? may play a major role in the post-transcriptional regulation of gene expression and maintenance of the epigenome in liver.
Project description:The TRIB1 locus has been linked to both cardiovascular disease and hepatic steatosis. Recent efforts have revealed TRIB1 to be a major regulator of liver function, largely, but not exclusively, via CEBPA degradation. We recently uncovered a functional interaction between TRIB1 and HNF4A, another key regulator of hepatic function, whose molecular underpinnings remained to be clarified. Here we have extended these findings. In hepatoma models, HNF4A levels were found to depend on TRIB1, independently of its impact on CEBPA. Using a reporter assay model, MTTP reporter activity, which depends on HNF4A, positively correlated with TRIB1 levels. Confocal microscopy demonstrated partial colocalization of TRIB1 and HNF4A. Using overexpressed proteins we demonstrate that TRIB1 and HNF4A can form complexes in vivo. Mapping of the interaction interfaces identified two distinct regions within TRIB1 which associated with the N-terminal region of HNF4A. Lastly, the TRIB1-HNF4A interaction resisted competition with a CEPBA-derived peptide, suggesting different binding modalities. Together these findings establish that TRIB1 is required for HNF4A function. This regulatory axis represents a novel CEBPA-independent aspect of TRIB1 function predicted to play an important role in liver physiology.
Project description:HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.
Project description:Hepatocyte nuclear factor 4-alpha (HNF4-α) is a nuclear receptor regulating metabolism, cell junctions, differentiation and proliferation in liver and intestinal epithelial cells. Mutations within the HNF4A gene are associated with human diseases such as maturity-onset diabetes of the young. Recently, HNF4A has also been described as a susceptibility gene for ulcerative colitis in genome-wide association studies. In addition, specific HNF4A genetic variants have been identified in pediatric cohorts of Crohn's disease. Results obtained from knockout mice supported that HNF4-α can protect the intestinal mucosae against inflammation. However, the exact molecular links behind HNF4-α and inflammatory bowel diseases remains elusive. In this review, we will summarize the current knowledge about the role of HNF4-α and its isoforms in inflammation. Specific nature of HNF4-α P1 and P2 classes of isoforms will be summarized. HNF4-α role as a hepatocyte mediator for cytokines relays during liver inflammation will be integrated based on documented examples of the literature. Conclusions that can be made from these earlier liver studies will serve as a basis to extrapolate correlations and divergences applicable to intestinal inflammation. Finally, potential functional roles for HNF4-α isoforms in protecting the intestinal mucosae from chronic and pathological inflammation will be presented.
Project description:Hepatocyte nuclear factor 4alpha (HNF4alpha) is a member of the nuclear receptor superfamily that plays a central role in organ development and metabolic functions. Mutations on HNF4alpha cause maturity-onset diabetes of the young (MODY), a dominant monogenic cause of diabetes. In order to understand the molecular mechanism of promoter recognition and the molecular basis of disease-causing mutations, the recombinant HNF4alpha DNA-binding domain was prepared and used in a study of its binding properties and in crystallization with a 21-mer DNA fragment that contains the promoter element of another MODY gene, HNF1alpha. The HNF4alpha protein displays a cooperative and specific DNA-binding activity towards its target gene-recognition elements. Crystals of the complex diffract to 2.0 A using a synchrotron-radiation source under cryogenic (100 K) conditions and belong to space group C2, with unit-cell parameters a = 121.63, b = 35.43, c = 70.99 A, beta = 119.36 degrees . A molecular-replacement solution has been obtained and structure refinement is in progress. This structure and the binding studies will provide the groundwork for detailed functional and biochemical studies of the MODY mutants.
Project description:Hepatocyte nuclear factor 4 alpha (HNF4?), the master regulator of hepatocyte differentiation, has been recently shown to inhibit hepatocyte proliferation by way of unknown mechanisms. We investigated the mechanisms of HNF4?-induced inhibition of hepatocyte proliferation using a novel tamoxifen (TAM)-inducible, hepatocyte-specific HNF4? knockdown mouse model. Hepatocyte-specific deletion of HNF4? in adult mice resulted in increased hepatocyte proliferation, with a significant increase in liver-to-body-weight ratio. We determined global gene expression changes using Illumina HiSeq-based RNA sequencing, which revealed that a significant number of up-regulated genes following deletion of HNF4? were associated with cancer pathogenesis, cell cycle control, and cell proliferation. The pathway analysis further revealed that c-Myc-regulated gene expression network was highly activated following HNF4? deletion. To determine whether deletion of HNF4? affects cancer pathogenesis, HNF4? knockdown was induced in mice treated with the known hepatic carcinogen diethylnitrosamine (DEN). Deletion of HNF4? significantly increased the number and size of DEN-induced hepatic tumors. Pathological analysis revealed that tumors in HNF4?-deleted mice were well-differentiated hepatocellular carcinoma (HCC) and mixed HCC-cholangiocarcinoma. Analysis of tumors and surrounding normal liver tissue in DEN-treated HNF4? knockout mice showed significant induction in c-Myc expression. Taken together, deletion of HNF4? in adult hepatocytes results in increased hepatocyte proliferation and promotion of DEN-induced hepatic tumors secondary to aberrant c-Myc activation.
Project description:UnlabelledMatrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of liver-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150 Pa and increased to 1-6 kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α), whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase. In addition, blockade of the Rho/Rho-associated protein kinase pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix.ConclusionFibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/Rho-associated protein kinase pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. (Hepatology 2016;64:261-275).
Project description:BackgroundSerum transferrin levels represent an independent predictor of mortality in patients with liver failure. Hepatocyte nuclear factor 4 alpha (HNF4α) is a master regulator of hepatocyte functions. The aim of this study was to explore whether serum transferrin reflects HNF4α activity.MethodsFactors regulating transferrin expression in alcoholic hepatitis (AH) were assessed via transcriptomic/methylomic analysis as well as chromatin immunoprecipitation coupled to DNA sequencing. The findings were corroborated in primary hepatocytes. Serum and liver samples from 40 patients with advanced liver disease of multiple etiologies were also studied.ResultsIn patients with advanced liver disease, serum transferrin levels correlated with hepatic transferrin expression (r = 0.51, p = 0.01). Immunohistochemical and biochemical tests confirmed reduced HNF4α and transferrin protein levels in individuals with cirrhosis. In AH, hepatic gene-gene correlation analysis in liver transcriptome revealed an enrichment of HNF4α signature in transferrin-correlated transcriptome while transforming growth factor beta 1 (TGFβ1), tumor necrosis factor α (TNFα), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) negatively associated with transferrin signature. A key regulatory region in transferrin promoter was hypermethylated in patients with AH. In primary hepatocytes, treatment with TGFβ1 or the HNF4α inhibitor BI6015 suppressed transferrin production, while exposure to TNFα, IL-1β, and IL-6 had no effect. The correlation between hepatic HNF4A and transferrin mRNA levels was also seen in advanced liver disease.ConclusionsSerum transferrin levels constitute a prognostic and mechanistic biomarker. Consequently, they may serve as a surrogate of impaired hepatic HNF4α signaling and liver failure.