A five-species transcriptome array for oral mixed-biofilm studies
Ontology highlight
ABSTRACT: Investigation of whole genome gene expression levels of P. gingivalis W83, F. nucleatum DSMZ 25586, S. sanguinis SK36, A. actinomycetemcomitans HK1651, S. mutans UA159 in an 24 h old culture. Additionally, whole genome gene expression level changes of S. mutans UA159 biofilm cells after co-cultivation with S. mitis ATCC 11843 were compared to its single species biofilm growth after 24 h. Aim: Demonstration of the usefulness of a five-species gene expression array. Multiple probes per gene enabled identification of single inter-species cross-hybridizing probes. The deletion of such probes lead almost not to the deletion of the whole gene. This was investigated and confirmed by a two-species biofilm expression analysis: The here described array was used for the identification of genes of S. mutans influenced by the presence of S. mitis. Materials and Methods: P. gingivalis W83, F. nucleatum DSMZ 25586, S. sanguinis SK36, A. actinomycetemcomitans HK1651,and S. mutans UA159 were grown in CDM/succrose or artificial saliva/galactose in a single-species culture for 24 h anaerobically resulting in biofilm structures or monolayers. Total RNA was isolated and used for microarray analysis. Probes were analysed for the presence of biological false positive signals caused by cross-hybridizing probes of one of the other species presented on the chip. Further, a simple procedure was developed for automatical identification and deletion of false positive signals caused by washing artefacts, resulting in a more reliable outcome. In the case of the S. mutans/S. mitis mixed-species biofilm, both species were cultured together for 24 h like previously described. The found gene regulations were verified by RT-PCR. Results: Experiments with cDNA from 24 h old single-species cultures allowed the identification of cross-species hybridizing probes on the array, which can be eliminated in mixed-species experimental settings without the need to exclude the whole genes from the analysis. Between 69 % and almost 100 % represented genomes on this array were found actively transcribed under the mono-species monolayer and biofilm conditions used here. S. mutans / S. mitis co-culture: Physiological investigations revealed an increase in S. mutans biofilm mass with a decrease in pH-value under the influence of S. mitis, thereby confirming previously published data. A stringent fold change cut-off of 2 (p<0.05) identified 19 S. mutans transcripts with increased abundance, and 11 with decreased abundance compared to a S. mutans mono-species biofilm. Many of the genes have previously been found differentially regulated under general and acid stress, thereby confirming the value of this array. Conclusions: Taken together, this new array allows transcriptome studies on multi-species oral biofilm interactions and could become an important asset in future oral biofilm and inhibitor/therapy studies.
ORGANISM(S): Streptococcus mutans UA159 Fusobacterium nucleatum Aggregatibacter actinomycetemcomitans HK1651 Porphyromonas gingivalis W83 Streptococcus sanguinis SK36 Streptococcus mitis
PROVIDER: GSE28841 | GEO | 2011/12/09
SECONDARY ACCESSION(S): PRJNA140619
REPOSITORIES: GEO
ACCESS DATA