IFNλ1 is a STING-dependent mediator of DNA damage and induces Immune activation in lung cancer
Ontology highlight
ABSTRACT: Introduction: The importance of the cGAS-STING pathway and type I interferon (IFN) in anti-tumor immunity has been widely studied. However, there is limited knowledge about the role of type III IFNs in cancer settings. Type III IFNs, comprising IFNλ1-4, are opposite to type I IFN only expressed by a few cell types, including epithelial cells, and the receptor subunit IFNLR1, is equally only expressed on limited types of cells. Methods: Gene and protein expression of the cGAS-STING signaling pathway was characterized in a series of non-small cell lung cancer (NSCLC) cell lines. Herring-testis DNA stimulation and chemotherapy drugs (doxorubicin and cisplatin) were used to activate the cGAS-STING pathway, and the level of activation was determined by measuring changes in the transcriptomic profile as well as type I and III IFNs by ELISA. Re-expression of IFNLR1 on cancer cell lines was achieved using CRISPR activation (CRISPRa) followed by evaluating chemotherapy-induced apoptosis using flow cytometry assays. Results: STING was not broadly expressed across the NSCLC cell lines. Those cancer cell lines expressing all relevant factors supporting the cGAS-STING pathway secreted IFNλ following STING activation whereas only few of them expressed IFNβ. Treatment with chemotherapy drugs likewise preferentially induced IFNλ, which was abrogated in CRISPR-Cas9 STING knock-out cells. Expression of IFNLR1 was found downregulated in the cancer cell lines compared to the benign epithelial cell line Nuli-1. Rescuing IFNLR1 expression by CRISPRa in multiple cancer cell lines sensitization them to IFNλ-stimulation and resulted in significant reduction in cell viability. Conclusion: Downregulation of IFNLR1 can be an immune evasion mechanism developed by cancer cells to avoid responding to endogenous type III IFNs. Thus, rescuing IFNLR1 expression in NSCLC in conjunction to chemotherapy may potentially be harnessed to elevate the anti-tumoral responses.
Project description:Influenza infections result in a significant number of severe illnesses annually, many of which are complicated by secondary bacterial super-infection. Primary influenza infection has been shown to increase susceptibility to secondary methicillin-resistant Staphylococcus aureus (MRSA) infection by altering the host immune response, leading to significant immunopathology. Type III interferons (IFNs), or IFNλs, have gained traction as potential antiviral therapeutics due to their restriction of viral replication without damaging inflammation. The role of IFNλ in regulating epithelial biology in super-infection has recently been established; however, the impact of IFNλ on immune cells is less defined. In this study, we infected wild-type and IFNLR1-/- mice with influenza A/PR/8/34 followed by S. aureus USA300. We demonstrated that global IFNLR1-/- mice have enhanced bacterial clearance through increased uptake by phagocytes, which was shown to be cell-intrinsic specifically in myeloid cells in mixed bone marrow chimeras. We also showed that depletion of IFNLR1 on CX3CR1 expressing myeloid immune cells, but not neutrophils, was sufficient to significantly reduce bacterial burden compared to mice with intact IFNLR1. These findings provide insight into how IFNλ in an influenza-infected lung impedes bacterial clearance during super-infection and show a direct cell intrinsic role for IFNλ signaling on myeloid cells.
Project description:Stimulator of interferon genes (STING), the central hub protein of the cGAS-STING signaling, is essential for type I IFN production of innate immunity. However, prolonged or excessive activation of STING is highly related to autoimmune diseases, most of which exhibit the hallmark of elevated expression of type I interferons and IFN-stimulated genes (ISGs). Thus, the activity of STING must be stringently controlled to maintain immune homeostasis. Here, we reported that CK1α, a protein serine/threonine kinase, was essential to prevent the over-activation of STING-mediated type I IFN signaling through autophagic degradation of STING. Mechanistically, CK1α interacted with STING upon the cGAS-STING pathway activation and promoted STING autophagic degradation by enhancing the phosphorylation of p62 at serine 349, which was critical for p62 mediated STING autophagic degradation. Consistently, SSTC3, a selective CK1α agonist, significantly attenuated the response of the cGAS-STING signaling by promoting STING autophagic degradation. Importantly, pharmaceutical activation of CK1α using SSTC3 markedly repressed the systemic autoinflammatory responses in the Trex1-/- mouse autoimmune disease model and effectively suppressed the production of IFNs and ISGs in the PBMCs of SLE patients. Taken together, our study reveals a novel regulatory role of CK1α in the autophagic degradation of STING to maintain immune homeostasis. Manipulating CK1α through SSTC3 might be a potential therapeutic strategy for alleviating STING-mediated aberrant type I IFNs in autoimmune diseases.
Project description:Syndrome Coronavirus 2 (SARS-CoV-2), is characterized by significant lung pathology and extrapulmonary complications. Type I interferons (IFNs) play an essential role in the pathogenesis of COVID-19. While rapid induction of type I IFNs limits virus propagation, sustained elevation of type I IFNs in the late phase of the infection is associated with aberrant inflammation and poor clinical outcome. Using proteomic data from a lung-on-chip model revealed that, in addition to macrophages, SARS-CoV-2 infection activates cGAS-STING signalling in endothelial cells through mitochondrial DNA release, leading to cell death and type I IFN production.
Project description:Type I interferon (IFN) signalling is tightly controlled. Upon recognition of DNA by cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING) translocates along the endoplasmic reticulum (ER)-Golgi axis to induce IFN signalling. Afterwards, signal termination is achieved through autophagic degradation of STING, or STING recycling by retrograde COPI-mediated transport. Here we identify the GTPase ARF1 as a negative regulator of cGAS-STING signaling. Heterozygous ARF1 missense mutations cause a novel type I interferonopathy associated with enhanced IFN stimulated gene production. Expression of patient-derived, GTPase-defective, ARF1 in cell lines and primary cells results in increased cGAS-STING dependent type I IFN signalling. Mechanistically, mutated ARF1 both induces activation of cGAS by aberrant mitochondrial DNA, and promotes accumulation of active STING at the Golgi/ERGIC due to defective COPI retrograde transport. Our data establish ARF1 as a key factor in cGAS-STING homeostasis, which is required to maintain mitochondrial integrity and promote STING recycling.
Project description:The transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is activated by the metabolite itaconate during metabolic reprogramming. Activated Nrf2 then dampens the release of pro-inflammatory cytokines and type I IFNs in response to toll-like receptor stimulation. If and how Nrf2 affects cytosolic antiviral sensing and whether this occurs during metabolic reprogramming is currently not known. Here, we show that Nrf2 is a negative regulator of the adaptor molecule STimulator of INterferon Genes (STING), which signals downstream of the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS). The regulation of STING by Nrf2 was inducible by the metabolite itaconate, specific to human cells, and sufficient to decrease the responsiveness to STING agonists and to increase the susceptibility to infection with DNA viruses. Mechanistically, Nrf2 regulated STING expression post-transcriptionally by increasing STING mRNA stability. Lastly, treatment with itaconate or with the chemical Nrf2 inducer sulforaphane repressed STING expression and the release of type I IFNs in cells from patients with the STING dependent interferonopathy SAVI. With this report we identify Nrf2 as an important regulator of cGAS-STING signaling pathway and link metabolic reprogramming to control of cytosolic DNA sensing.
Project description:In innate immune cells, intracellular sensors such as cGAS-STING stimulate type I/III interferon (IFN) expression, which promotes antiviral defense and immune activation. However, how IFN-I/III expression is controlled in adaptive cells is poorly understood. Here, we identify a transcriptional rheostat orchestrated by RELA that confers human T cells with innate-like abilities to produce IFN-I/III. Despite intact cGAS-STING signaling, IFN-I/III responses are stunted in CD4+ T cells compared with dendritic cells or macrophages. We find that lysine residues in RELA tune the IFN-I/III response at baseline and in response to STING stimulation in CD4+ T cells. This response requires positive feedback driven by cGAS and IRF7 expression. By combining RELA with IRF3 and DNA demethylation, IFN-I/III production in CD4+ T cells reaches levels observed in dendritic cells. IFN-I/III production provides self-protection of CD4+ T cells against HIV infection and enhances the elimination of tumor cells by CAR T cells. Therefore, innate-like functions can be tuned and leveraged in human T cells.
Project description:A fascinating but uncharacterized action of antimitotic chemotherapy is to collectively prime cancer cells to apoptotic mitochondrial outer membrane permeabilization (MOMP), while impacting only on cycling cell subsets. Here, we show that a proapoptotic secretory phenotype is induced by activation of cGAS/STING in cancer cells that are hit by antimitotic treatment, accumulate micronuclei and maintain mitochondrial integrity despite intrinsic apoptotic pressure. Organotypic cultures of primary human breast tumors and patient-derived xenografts sensitive to paclitaxel exhibit gene expression signatures typical of type I IFN and TNFalpha exposure. These cytokines induced by cGAS/STING activation trigger NOXA expression in neighboring cells and render them acutely sensitive to BCL-xL inhibition. cGAS/STING-dependent apoptotic effects are required for paclitaxel response in vivo, and they are amplified by sequential, but not synchronous, administration of BH3 mimetics. Thus anti-mitotic agents propagate apoptotic priming across heterogeneously sensitive cancer cells through cytosolic DNA sensing pathway-dependent extracellular signals, exploitable by delayed MOMP targeting.
Project description:RIG-I like helicases (RLHs) and cGAS are crucial cytosolic sensors of viral RNA and DNA, respectively, and induce type I IFNs via TBK1/IKKε. hnRNPM was described to possess antimicrobial activities. Here, we show that hnRNPM promotes IRF3 phosphorylation and type I IFN induction downstream of cGAS and RIG-I in THP-1 cells and primary human fibroblasts. Interactome analysis revealed that hnRNPM forms a multiprotein complex with ELAVL1, TBK1, IKKε, IKKβ, and NF-κB p65. hnRNPM, ELAVL1, and TBK1 predominantly interacted in the cytosol. To our knowledge, hnRNPM and ELAVL1 represent the first non-redundant signaling components merging the cGAS-STING and RIG-I–MAVS pathways. Therefore, our findings may have implications for host defense and auto-inflammatory diseases.
Project description:Doxorubicin is an effective chemotherapy drug for treating various types of cancer. However, lethal cardiotoxicity severely limits its clinical use. Recent evidence has indicated that aberrant activation of the cytosolic DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in cardiovascular destruction. Here, we investigate the involvement of this mechanism in doxorubicin-induced cardiotoxicity (DIC).
Project description:Doxorubicin is an effective chemotherapy drug for treating various types of cancer. However, lethal cardiotoxicity severely limits its clinical use. Recent evidence has indicated that aberrant activation of the cytosolic DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in cardiovascular destruction. Here, we investigate the involvement of this mechanism in doxorubicin-induced cardiotoxicity (DIC).