Proteogenomic Characterization of Primary Oral Cancer Unveils Extracellular Matrix Remodeling and Immunosuppressive Microenvironment Linked to Lymph Node Metastasis [RNA-seq]
Ontology highlight
ABSTRACT: Our genomic analysis identified significant mutations in key genes within the MAPK, TGF-β, and WNT signaling pathways, which are essential for tumor development. The proteogenomic analysis highlighted pathways critical for lymph node dissemination and factors contributing to an immunosuppressive tumor microenvironment. Elevated levels of POSTN were found to reorganize the extracellular matrix (ECM), interact with TGF-β, disrupt cell cycle regulation, and suppress the immune response by reducing VCAM1 activity. Integrated analyses of single-cell and spatial transcriptome data revealed that cancer-associated fibroblasts (CAFs) secrete TGF-β1/2, promoting cancer cell metastasis through epithelial-mesenchymal transition (EMT). Our integrated multi-omics analysis provides a detailed understanding of molecular mechanisms driving lymph node metastasis of OSCC. These insights could lead to more precise diagnostics and targeted treatments.
Project description:The integrated proteogenomic analysis revealed proteomic characteristics associated with genomic variants and clinical features including arm or focal amplifications, SNV mutations, tumor size, lymph node metastasis, smoking history.
Project description:Purpose: Presence of pelvic lymph node metastases is the main prognostic factor in early stage cervical cancer patients, primarily treated with surgery. Aim of this study was to identify cellular tumor pathways associated with pelvic lymph node metastasis in early stage cervical cancer. Experimental Design: Gene expression profiles (Affymetrix U133 plus 2.0) of 20 patients with negative (N0) and 19 with positive lymph nodes (N+), were compared with gene sets that represent all 285 presently available pathway signatures. Validation immunostaining of tumors of 274 consecutive early stage cervical cancer patients was performed for representatives of the identified pathways. Results: Analysis of 285 pathways resulted in identification of five pathways (TGF-β, NFAT, ALK, BAD, and PAR1) that were dysregulated in the N0, and two pathways (β-catenin and Glycosphingolipid Biosynthesis Neo Lactoseries) in the N+ group. Class comparison analysis revealed that five of 149 genes that were most significantly differentially expressed between N0 and N+ tumors (P<0.001) were involved in β-catenin signaling (TCF4, CTNNAL1, CTNND1/p120, DKK3 and WNT5a). Immunohistochemical validation of two well-known cellular tumor pathways (TGF-β and β-catenin) confirmed that the TGF-β pathway (positivity of Smad4) was related to N0 (OR:0.20, 95%CI:0.06-0.66) and the β-catenin pathway (p120 positivity) to N+ (OR:1.79, 95%CI:1.05-3.05). Conclusions: Our study provides new, validated insights in the molecular mechanism of lymph node metastasis in cervical cancer. Pathway analysis of the microarray expression profile suggested that the TGF-β and p120-associated non-canonical β-catenin pathways are important in pelvic lymph node metastasis in early stage cervical cancer. For the microarray experiment, we selected fresh frozen primary cervical cancer tissue, containing at least 80% tumor cells, of patients with histologically confirmed N0 (n=20) and of patients with N+ (n=19). The N0 and N+ groups were matched for age, FIGO stage and histology (all squamous cell carcinoma).
Project description:Purpose: Presence of pelvic lymph node metastases is the main prognostic factor in early stage cervical cancer patients, primarily treated with surgery. Aim of this study was to identify cellular tumor pathways associated with pelvic lymph node metastasis in early stage cervical cancer. Experimental Design: Gene expression profiles (Affymetrix U133 plus 2.0) of 20 patients with negative (N0) and 19 with positive lymph nodes (N+), were compared with gene sets that represent all 285 presently available pathway signatures. Validation immunostaining of tumors of 274 consecutive early stage cervical cancer patients was performed for representatives of the identified pathways. Results: Analysis of 285 pathways resulted in identification of five pathways (TGF-β, NFAT, ALK, BAD, and PAR1) that were dysregulated in the N0, and two pathways (β-catenin and Glycosphingolipid Biosynthesis Neo Lactoseries) in the N+ group. Class comparison analysis revealed that five of 149 genes that were most significantly differentially expressed between N0 and N+ tumors (P<0.001) were involved in β-catenin signaling (TCF4, CTNNAL1, CTNND1/p120, DKK3 and WNT5a). Immunohistochemical validation of two well-known cellular tumor pathways (TGF-β and β-catenin) confirmed that the TGF-β pathway (positivity of Smad4) was related to N0 (OR:0.20, 95%CI:0.06-0.66) and the β-catenin pathway (p120 positivity) to N+ (OR:1.79, 95%CI:1.05-3.05). Conclusions: Our study provides new, validated insights in the molecular mechanism of lymph node metastasis in cervical cancer. Pathway analysis of the microarray expression profile suggested that the TGF-β and p120-associated non-canonical β-catenin pathways are important in pelvic lymph node metastasis in early stage cervical cancer.
Project description:Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastasis, which is the leading cause of death in breast cancer patients. We show that Cdc42 GTPase-activating protein (CdGAP) promotes tumor formation and metastasis to lungs in the HER2-positive (HER2+) murine breast cancer model. CdGAP facilitates intravasation, extravasation, and growth at metastatic sites. CdGAP depletion in HER2+ murine primary tumors mediates crosstalk with a Dlc1-RhoA pathway and is associated with a transforming growth factor-β (TGF-β)-induced EMT transcriptional signature. To further delineate the molecular mechanisms underlying the pro-migratory role of CdGAP in breast cancer cells, we searched for CdGAP interactors by performing a proteomic analysis using HEK293 cells overexpressing GFP-CdGAP. We found that CdGAP interacts with the adaptor Talin to modulate focal adhesion dynamics and integrin activation. Moreover, HER2+ breast cancer patients with high CdGAP mRNA expression combined with a high TGF-β-EMT signature are more likely to present lymph node invasion. Our results suggest CdGAP as a candidate therapeutic target for HER2+ metastatic breast cancer by inhibiting TGF-β and Integrin/Talin signaling pathways.
Project description:Colorectal cancer (CRC) is the third most common cancer worldwide and liver metastasis remains the major cause of death in CRC. Extensive genomic analysis provided valuable insight into the pathogenesis and progression of CRC. However, the major proteogenomic characterization of CRC liver metastasis is still unknown. We investigated proteogenomic characterization and performed comprehensive integrative genomic analysis of human colorectal cancer liver metastasis.
Project description:Lymph node status is a crucial predictor for the overall survival of invasive breast cancer. However, lymph node involvement is only detected in about half of HER2 positive patients. Currently, there are no biomarkers available for distinguishing small size HER2-positive breast cancers with different lymph node statuses. Thus, in the present study, we applied label-free quantitative proteomic strategy to construct plasma proteomic profiles of ten patients with small size HER2-positive breast cancers (5 patients with lymph node metastasis versus 5 patients with lymph node metastasis).
Project description:To obtain more information about the lymph node metastasis of breast cancer cells, we selected the matched positive lymph nodes (PL), and negative lymph nodes (NL) of the same patient to perform integrated analysis. The PL, NL samples were analysed with single-cell ATAC sequencing.
Project description:To obtain more information about the lymph node metastasis of breast cancer cells, we selected the positive lymph nodes (PL) of the two patients to perform integrated analysis. The two PL samples were analysed with single-cell RNA sequencing.