Transcriptomics

Dataset Information

0

Distinct routes of clonal progression in SF3B1-mutant myelodysplastic syndromes


ABSTRACT: Myelodysplastic syndromes (MDS) are clonal stem cell disorders driven by heterogeneous genetic alterations leading to variable clinical course. MDS with splicing factor SF3B1 mutations is a distinct subtype with a favorable outcome. However, selected co-mutations induce poor prognosis and how these genetic lesions cooperate in human hematopoietic stem and progenitor cells (HSPCs) during disease progression is still unclear. Here, we integrated clinical and molecular profiling of patients with SF3B1 mutations with gene editing of primary and iPSC-derived human HSPCs to show that high-risk co-mutations impart distinct effects on lineage programs of SF3B1-mutant HSPCs. Secondary RUNX1 or STAG2 mutations were clinically associated with advanced disease and reduced survival. However, RUNX1 and STAG2 mutations induced opposing regulation of myeloid transcriptional programs and differentiation in SF3B1-mutant HSPCs. Moreover, high-risk RUNX1 and STAG2, but not low-risk TET2, mutations expanded distinct SF3B1-mutant HSPC subpopulations. These findings provide evidence that progression from low- to high-risk MDS involves distinct molecular and cellular routes depending on co-mutation patterns.

ORGANISM(S): Homo sapiens

PROVIDER: GSE290183 | GEO | 2025/03/21

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2020-04-07 | GSE131580 | GEO
2020-04-07 | GSE131581 | GEO
2020-04-07 | GSE131573 | GEO
2020-04-07 | GSE131577 | GEO
2022-03-08 | GSE184246 | GEO
2019-11-07 | GSE128429 | GEO
2014-11-22 | E-GEOD-63569 | biostudies-arrayexpress
| PRJNA797993 | ENA
2024-04-08 | PXD038700 | Pride
2024-05-29 | PXD038656 | Pride