Project description:In recent decades, the increasing interest in the field of immunotherapy has fostered an intense investigation of the breast cancer (BC) immune microenvironment. In this context, tumor-infiltrating lymphocytes (TILs) have emerged as a clinically relevant and highly reproducible biomarker capable of affecting BC prognosis and response to treatment. Indeed, the evaluation of TILs on primary tumors proved to be strongly prognostic in triple-negative (TN) BC patients treated with either adjuvant or neoadjuvant chemotherapy, as well as in early TNBC patients not receiving any systemic treatment, thus gaining level-1b evidence in this setting. In addition, a strong relationship between TILs and pathologic complete response after neoadjuvant chemotherapy has been reported in all BC subtypes and the prognostic role of higher TILs in early HER2-positive breast cancer patients has also been demonstrated. The interest in BC immune infiltrates has been further fueled by the introduction of the first immune checkpoint inhibitors in the treatment armamentarium of advanced TNBC in patients with PD-L1-positive status by FDA-approved assays. However, despite these advances, a biomarker capable of reliably and exhaustively predicting immunotherapy benefit in BC is still lacking, highlighting the imperative need to further deepen this issue. Finally, more comprehensive evaluation of immune infiltrates integrating both the quantity and quality of tumor-infiltrating immune cells and incorporation of TILs in composite scores encompassing other clinically or biologically relevant biomarkers, as well as the adoption of software-based and/or machine learning platforms for a more comprehensive characterization of BC immune infiltrates, are emerging as promising strategies potentially capable of optimizing patient selection and stratification in the research field. In the present review, we summarize available evidence and recent updates on immune infiltrates in BC, focusing on current clinical applications, potential clinical implications and major unresolved issues.
Project description:The potential response of immune checkpoint blockade (ICB) in thymic neuroendocrine neoplasms (T-NEN) is largely unknown and full of great expectations. The expression of immune checkpoint molecules and immune infiltrates greatly determine the response to ICB. However, studies regarding the immune landscape in T-NEN are scarce. This work was aimed to characterize the immune landscape and its association with clinical characteristics in T-NEN. The expression of programmed cell death protein 1 (PD-1) and its ligand, programmed death ligand-1 (PD-L1), and the density of tumor-infiltrating lymphocytes (TILs), monocytes, and granulocytes were determined by immunohistochemical (IHC) staining on tumor tissues from T-NEN. Immune landscapes were delineated and correlated with clinicopathological factors. We found that T-NEN with increased immune cell infiltration and enhanced expression of PD-1/PD-L1 tended to have restricted tumor size and less metastases. A higher density of CD8+ TILs was associated with a significantly lower rate of bone metastasis. In addition, we presented three cases of T-NEN who progressed after multiple lines of therapies and received ICB for alternative treatment. ICB elicited durable partial responses with satisfactory safety in two patients with atypical carcinoid, but showed resistance in 1 patient with large cell neuroendocrine carcinoma. This innovative study delineated for the first time the heterogeneous immune landscape in T-NEN and identified CD8+ TILs as a potential marker to predict bone metastasis. An “immune-inflamed” landscape with the presence of TILs predominated in T-NEN, making T-NEN a potentially favorable target for ICB treatment. Further judicious designs of “tailor-made” clinical trials of ICB in T-NEN are urgently needed.
Project description:BackgroundOsteosarcoma (OS) is the most widespread bone tumour among childhood cancers, and distant metastasis is the dominant factor in poor prognosis for patients with OS. Therefore, it is necessary to identify new prognostic biomarkers for identifying patients with aggressive disease.MethodsTwo OS datasets (GSE21257 and GSE33383) were downloaded from the Gene Expression Omnibus (GEO) and subsequently subjected to weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis (DGE) to screen candidate genes. A prognostic model was constructed using OS data derived from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) program to further screen key genes and perform gene ontology (GO) analysis. The prognostic values of key genes were assessed using the Kaplan-Meier (KM) plotter. The GEO dataset was used for immune infiltration analysis and association analysis of key genes. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) was employed to validate the expression levels of potentially crucial genes in OS cell lines.ResultsIn the present study, we found 114 genes with a highly significant correlation in the module and 44 downregulated genes; 25 candidate genes overlapped in the two parts of the genes. Among these, three key genes, C1QA, C1QB, and C1QC, were the most significant hub genes, which had the highest node degrees, were clustered into one group, and implicated in most significant biological processes (regulation of immune effector process). Moreover, these three key genes were negatively associated with the prognosis of OS and positively associated with three immune cells (follicular helper T cells, memory B cells, and CD8 T cells). Additionally, compared to non-metastatic OS cell lines, the expression of three key genes was significantly downregulated in metastatic OS cell lines.ConclusionOur results revealed that three key genes (C1QA, C1QB, and C1QC) were implicated in tumour immune infiltration and may be promising biomarkers for predicting metastasis and prognosis of patients with OS.
Project description:Immune infiltration of the tumor microenvironment has been associated with improved survival for some patients with solid tumors. The precise makeup and prognostic relevance of immune infiltrates across a broad spectrum of tumors remain unclear.Using mRNA sequencing data from The Cancer Genome Atlas (TCGA) from 11 tumor types representing 3485 tumors, we evaluated lymphocyte and macrophage gene expression by tissue type and by genomic subtypes defined within and across tumor tissue of origin (Cox proportional hazards, Pearson correlation). We investigated clonal diversity of B-cell infiltrates through calculating B-cell receptor (BCR) repertoire sequence diversity. All statistical tests were two-sided.High expression of T-cell and B-cell signatures predicted improved overall survival across many tumor types including breast, lung, and melanoma (breast CD8_T_Cells hazard ratio [HR] = 0.36, 95% confidence interval [CI] = 0.16 to 0.81, P = .01; lung adenocarcinoma B_Cell_60gene HR?=?0.71, 95% CI?=?0.58 to 0.87, P = 7.80E-04; melanoma LCK HR?=?0.86, 95% CI?=?0.79 to 0.94, P = 6.75E-04). Macrophage signatures predicted worse survival in GBM, as did B-cell signatures in renal tumors (Glioblastoma Multiforme [GBM]: macrophages HR?=?1.62, 95% CI?=?1.17 to 2.26, P = .004; renal: B_Cell_60gene HR?=?1.17, 95% CI?=?1.04 to 1.32, P = .009). BCR diversity was associated with survival beyond gene segment expression in melanoma (HR?=?2.67, 95% CI?=?1.32 to 5.40, P = .02) and renal cell carcinoma (HR?=?0.36, 95% CI?=?0.15 to 0.87, P = .006).These data support existing studies suggesting that in diverse tissue types, heterogeneous immune infiltrates are present and typically portend an improved prognosis. In some tumor types, BCR diversity was also associated with survival. Quantitative genomic signatures of immune cells warrant further testing as prognostic markers and potential biomarkers of response to cancer immunotherapy.
Project description:Alemtuzumab is a monoclonal antibody that causes rapid depletion of CD52-expressing immune cells. It has proven to be highly efficacious in active relapsing-remitting multiple sclerosis; however, the high risk of secondary autoimmune disorders has greatly complicated its use. Thus, deeper insight into the pathophysiology of secondary autoimmunity and potential biomarkers is urgently needed. The most critical time points in the decision-making process for alemtuzumab therapy are before or at Month 12, where the ability to identify secondary autoimmunity risk would be instrumental. Therefore, we investigated components of blood and CSF of up to 106 multiple sclerosis patients before and after alemtuzumab treatment focusing on those critical time points. Consistent with previous reports, deep flow cytometric immune-cell profiling (n = 30) demonstrated major effects on adaptive rather than innate immunity, which favoured regulatory immune cell subsets within the repopulation. The longitudinally studied CSF compartment (n = 18) mainly mirrored the immunological effects observed in the periphery. Alemtuzumab-induced changes including increased numbers of naïve CD4+ T cells and B cells as well as a clonal renewal of CD4+ T- and B-cell repertoires were partly reminiscent of haematopoietic stem cell transplantation; in contrast, thymopoiesis was reduced and clonal renewal of T-cell repertoires after alemtuzumab was incomplete. Stratification for secondary autoimmunity did not show clear immununological cellular or proteomic traits or signatures associated with secondary autoimmunity. However, a restricted T-cell repertoire with hyperexpanded T-cell clones at baseline, which persisted and demonstrated further expansion at Month 12 by homeostatic proliferation, identified patients developing secondary autoimmune disorders (n = 7 without secondary autoimmunity versus n = 5 with secondary autoimmunity). Those processes were followed by an expansion of memory B-cell clones irrespective of persistence, which we detected shortly after the diagnosis of secondary autoimmune disease. In conclusion, our data demonstrate that (i) peripheral immunological alterations following alemtuzumab are mirrored by longitudinal changes in the CSF; (ii) incomplete T-cell repertoire renewal and reduced thymopoiesis contribute to a proautoimmune state after alemtuzumab; (iii) proteomics and surface immunological phenotyping do not identify patients at risk for secondary autoimmune disorders; (iv) homeostatic proliferation with disparate dynamics of clonal T- and B-cell expansions are associated with secondary autoimmunity; and (v) hyperexpanded T-cell clones at baseline and Month 12 may be used as a biomarker for the risk of alemtuzumab-induced autoimmunity.
Project description:Testicular germ cell tumors (TGCT) are the most common type of testicular cancer, comprising 90-95% of cases and representing the most prevalent solid malignancy in young adult men. Immune infiltrates play important regulatory roles in tumors, but their role in TGCT remains unclear. Molecular subtyping is a promising way to provide precisely personalized treatment and avoid unnecessary toxicities. This study investigated immune infiltrates, key biomarkers, and immune subtyping of TGCT. In GSE3218, 24 differentially expressed immune genes (immDEGs) were identified. A new risk signature consisting of six immDEGs was developed using these genes. Individuals in the high-risk group had poor overall survival (OS; hazard ratio of 4.61 and P-value < 0.001). We validated the six-immDEGs risk signature in pure seminoma and mixed TGCT types. Two distinct immune patterns (Cluster 1 and Cluster 2) were identified using the consensusclusterplus, and Cluster 1 possessed an unfavorable OS compared with Cluster 2 (hazard ratio, 2.56; P < 0.001). Cluster 1 patients had significantly lower naive B cells, memory B cells, plasma cells, naive CD4 T cells, gamma delta T cells, and activated dendritic cells than Cluster 2 patients. Genes relating to the WNT signaling pathway, TGF-β signaling pathway, antigen processing and presentation, and NK cell-mediated cytotoxicity were associated with TGCT. STC1 was elevated in TGCT tissues, and its high expression showed advanced clinicopathological characteristics and poor prognosis of TGCT. Our findings may contribute to an increased understanding of the onset and progression of TGCT.
Project description:Background: Herbicides are environmental contaminants that have gained much attention due to the potential hazards they pose to human health. Glyphosate, the active ingredient in many commercial herbicides, is the most heavily applied herbicide worldwide. The recent rise in glyphosate application to corn and soy crops correlates positively with increased death rates due to Alzheimer's disease and other neurodegenerative disorders. Glyphosate has been shown to cross the blood-brain barrier in in vitro models, but has yet to be verified in vivo. Additionally, reports have shown that glyphosate exposure increases pro-inflammatory cytokines in blood plasma, particularly TNFα. Methods: Here, we examined whether glyphosate infiltrates the brain and elevates TNFα levels in 4-month-old C57BL/6J mice. Mice received either 125, 250, or 500 mg/kg/day of glyphosate, or a vehicle via oral gavage for 14 days. Urine, plasma, and brain samples were collected on the final day of dosing for analysis via UPLC-MS and ELISAs. Primary cortical neurons were derived from amyloidogenic APP/PS1 pups to evaluate in vitro changes in Aβ40-42 burden and cytotoxicity. RNA sequencing was performed on C57BL/6J brain samples to determine changes in the transcriptome. Results: Our analysis revealed that glyphosate infiltrated the brain in a dose-dependent manner and upregulated TNFα in both plasma and brain tissue post-exposure. Notably, glyphosate measures correlated positively with TNFα levels. Glyphosate exposure in APP/PS1 primary cortical neurons increases levels of soluble Aβ40-42 and cytotoxicity. RNAseq revealed over 200 differentially expressed genes in a dose-dependent manner and cell-type-specific deconvolution analysis showed enrichment of key biological processes in oligodendrocytes including myelination, axon ensheathment, glial cell development, and oligodendrocyte development. Conclusions: Collectively, these results show for the first time that glyphosate infiltrates the brain, elevates both the expression of TNFα and soluble Aβ, and disrupts the transcriptome in a dose-dependent manner, suggesting that exposure to this herbicide may have detrimental outcomes regarding the health of the general population.
Project description:This study investigates the association of PD-L1 expression and immune cell infiltrates and their impact on clinical outcome, in addition to their overlap with microsatellite instability (MSI), HER2 and ATM molecular subgroups of gastric cancer (GC). PD-L1 membrane expression on tumour cells (TC) and infiltrating immune cells (IC), CD3 + T-lymphocytes, CD8+ cytotoxic T-cells, ATM and HER2 were assessed by immunohistochemistry (IHC) in the ACRG (Asian Cancer Research Group) GC cohort (N = 380). EBV status was determined using in situ hybridization and MSI status was performed using PCR and MLH1 IHC. The PD-L1 segment was associated with increased T-cell infiltrates, while the MSI-high segment was enriched for PD-L1, CD3, and CD8. Multivariate analysis confirmed PD-L1 positivity, high CD3 and high CD8 as independent prognostic factors for both disease-free survival and overall survival (all p < 0.05). Patients with MSI-high tumours had better overall survival by both univariate and multivariate analysis. The ATM-low and HER2-high subgroups differed markedly in their immune profile; the ATM-low subgroups enriched for MSI, PD-L1 positivity and CD8 + T-cells, while the HER2 segment was enriched for MSS, with no enrichment for immune markers. Hence, we demonstrate a molecular profiling approach that can divide GC into four molecular subgroups, namely ATM-low, HER2-high, PD-L1 positive and MSI-high with differing levels of immune infiltrates and prognostic significance which may help to stratify patients for response to targeted therapies.