Global analysis of RNA secondary structure conservation between two metazoans
Ontology highlight
ABSTRACT: The secondary structure of RNA is necessary for its maturation, regulation, and processing. However, the global influence of RNA folding in eukaryotes is still unclear. Here, we identify evolutionarily conserved features of RNA secondary structure in metazoans by applying our high-throughput, sequencing-based, structure-mapping approach to Drosophila melanogaster and Caenorhabditis elegans. This analysis reveals key structural patterns across protein-coding transcripts that indicate RNA folding is influential to protein translation and microRNA-mediated targeting and/or regulation of mRNAs in animals. Additionally, we uncover a novel population of highly base-paired RNAs, many of which are likely functional, long, non-coding RNAs. Finally, we identify and characterize ~180 structural motifs of mRNAs that are under positive or negative selection in these metazoans, thereby revealing a large set of RNA structures that are likely functional. Overall, our findings highlight the significance of secondary structure within RNA molecules, and provide the first comprehensive evidence of widespread RNA secondary structure conservation in animals.
Project description:The secondary structure of RNA is necessary for its maturation, regulation, and processing. However, the global influence of RNA folding in eukaryotes is still unclear. Here, we identify evolutionarily conserved features of RNA secondary structure in metazoans by applying our high-throughput, sequencing-based, structure-mapping approach to Drosophila melanogaster and Caenorhabditis elegans. This analysis reveals key structural patterns across protein-coding transcripts that indicate RNA folding is influential to protein translation and microRNA-mediated targeting and/or regulation of mRNAs in animals. Additionally, we uncover a novel population of highly base-paired RNAs, many of which are likely functional, long, non-coding RNAs. Finally, we identify and characterize ~180 structural motifs of mRNAs that are under positive or negative selection in these metazoans, thereby revealing a large set of RNA structures that are likely functional. Overall, our findings highlight the significance of secondary structure within RNA molecules, and provide the first comprehensive evidence of widespread RNA secondary structure conservation in animals. Double-stranded (dsRNA) specific RNA sequencing (dsRNA-seq) and single-stranded (ssRNA) specific RNA sequencing (ssRNA-seq) in Drosophila DL1 cells and C. elegans mixed stage N2 worms. Each of the four samples (dsRNA/Dmel, ssRNA/Dmel, dsRNA/Cel, and ssRNA/Cel) was sequenced separately on both Illumina GA-IIx and Hiseq2000, giving a total of eight datasets. Two corresponding smRNA libraries (smRNA-seq) of the same DL1 cells and mixed stage N2 worms are also presented.
Project description:The secondary structure of an RNA molecule plays an integral role in its maturation, regulation, processing, and functionality. However, the global influence of this feature on plant gene expression is still for the most part unclear. Here, we use a high-throughput, sequencing-based, structure-mapping approach in conjunction with transcriptome-wide sequencing of polyA+-selected (RNA-seq), small (smRNA-seq), and ribosome-bound (ribo-seq) RNA populations to investigate the impact of RNA secondary structure on gene expression regulation in Arabidopsis. From this analysis, we find that highly unpaired and paired RNAs are strongly correlated with euchromatic and heterochromatic epigenetic histone modifications, respectively, providing further evidence that secondary structure is necessary for RNA-mediated posttranscriptional regulatory pathways. Additionally, we uncover key structural patterns across protein-coding transcripts that indicate RNA folding demarcates regions of protein translation and likely affects microRNA-mediated regulation of mRNAs in this model plant. We also reveal that RNA folding is significantly anti-correlated with overall transcript abundance, which is likely due to the increased propensity of highly structured mRNAs to be degraded and/or processed into smRNAs. Finally, we find that secondary structure affects mRNA translation, suggesting that this feature regulates plant gene expression at multiple levels. Overall, our findings provide the first global assessment of RNA folding and its significant regulatory effects in a plant transcriptome. Single-stranded RNA sequencing (ssRNA-seq) and ribosome-bound RNA sequencing (ribo-seq) in immature buds. A single replicate of each library.
Project description:The secondary structure of an RNA molecule plays an integral role in its maturation, regulation, processing, and functionality. However, the global influence of this feature on plant gene expression is still for the most part unclear. Here, we use a high-throughput, sequencing-based, structure-mapping approach in conjunction with transcriptome-wide sequencing of polyA+-selected (RNA-seq), small (smRNA-seq), and ribosome-bound (ribo-seq) RNA populations to investigate the impact of RNA secondary structure on gene expression regulation in Arabidopsis. From this analysis, we find that highly unpaired and paired RNAs are strongly correlated with euchromatic and heterochromatic epigenetic histone modifications, respectively, providing further evidence that secondary structure is necessary for RNA-mediated posttranscriptional regulatory pathways. Additionally, we uncover key structural patterns across protein-coding transcripts that indicate RNA folding demarcates regions of protein translation and likely affects microRNA-mediated regulation of mRNAs in this model plant. We also reveal that RNA folding is significantly anti-correlated with overall transcript abundance, which is likely due to the increased propensity of highly structured mRNAs to be degraded and/or processed into smRNAs. Finally, we find that secondary structure affects mRNA translation, suggesting that this feature regulates plant gene expression at multiple levels. Overall, our findings provide the first global assessment of RNA folding and its significant regulatory effects in a plant transcriptome.
Project description:The structures of RNA molecules are often important for their function and regulation, yet there are no experimental techniques for genome-scale measurement of RNA structure. Here, we describe a novel strategy termed Parallel Analysis of RNA Structure (PARS), which is based on deep sequencing fragments of RNAs that were treated with structure-specific enzymes, thus providing simultaneous in-vitro profiling of the secondary structure of thousands of RNA species at single nucleotide resolution. We apply PARS to profile the secondary structure of the mRNAs of the budding yeast S. cerevisiae and obtain structural profiles for over 3000 distinct transcripts. Analysis of these profiles reveals several RNA structural properties of yeast transcripts, including the existence of more secondary structure over coding regions compared to untranslated regions, a three-nucleotide periodicity of secondary structure across coding regions, and a relationship between the efficiency with which an mRNA is translated and the lack of structure over its translation start site. PARS is readily applicable to other organisms and to profiling RNA structure in diverse conditions, thus enabling studies of the dynamics of secondary structure at a genomic scale.
Project description:The structures of RNA molecules are often important for their function and regulation, yet there are no experimental techniques for genome-scale measurement of RNA structure. Here, we describe a novel strategy termed Parallel Analysis of RNA Structure (PARS), which is based on deep sequencing fragments of RNAs that were treated with structure-specific enzymes, thus providing simultaneous in-vitro profiling of the secondary structure of thousands of RNA species at single nucleotide resolution. We apply PARS to profile the secondary structure of the mRNAs of the budding yeast S. cerevisiae and obtain structural profiles for over 3000 distinct transcripts. Analysis of these profiles reveals several RNA structural properties of yeast transcripts, including the existence of more secondary structure over coding regions compared to untranslated regions, a three-nucleotide periodicity of secondary structure across coding regions, and a relationship between the efficiency with which an mRNA is translated and the lack of structure over its translation start site. PARS is readily applicable to other organisms and to profiling RNA structure in diverse conditions, thus enabling studies of the dynamics of secondary structure at a genomic scale. RNA sample was treated with one of two structure-specific enzymes (RNase V1 or RNase S1). Four independent V1 experiments and three independent S1 experiments were carried out. Processed data file linked below. Data processing involves merging (or rather log-ratio-ing) the 7 lanes of SOLiD sequencing data against each other. Also linked below are the genome and transcriptome FASTA files used for mapping, and the annotation file having the format: gene_ID, chromosome, start, end, feature. Start and end are 1-based; feature is "Transcript" for the entire transcript (including introns), "Intron", "Exon", "5UTR" or "3UTR". Genome-wide measurement of RNA secondary structure in yeast, Kertesz et al., Nature Volume:467, Pages:103-107, Date published:(02 September 2010) http://www.nature.com/nature/journal/v467/n7311/abs/nature09322.html
Project description:The non-coding transcriptome of the hyperthermophilic archaeon Pyrococcus abyssi is investigated using the RNA-seq technology. A dedicated computational pipeline analyzes RNA-seq reads and prior genome annotation to identify small RNAs, untranslated regions of mRNAs, and cis-encoded antisense transcripts. Unlike other archaea, such as Sulfolobus and Halobacteriales, P. abyssi produces few leaderless mRNA transcripts. Antisense transcription is widespread (215 transcripts) and targets protein-coding genes that are less conserved than average genes. We identify at least three novel H/ACA-like guide RNAs among the newly characterized non-coding RNAs. Long 5' UTRs in mRNAs of ribosomal proteins and amino-acid biosynthesis genes strongly suggest the presence of cis-regulatory leaders in these mRNAs. We selected a high-interest subset of non-coding RNAs based on their strong promoters, high GC-content, phylogenetic conservation, or abundance. Some of the novel small RNAs and long 5' UTRs display high GC contents, suggesting unknown structural RNA functions. However, we were surprised to observe that most of the high-interest RNAs are AU-rich, which suggests an absence of stable secondary structure in the high-temperature environment of P. abyssi. Yet, these transcripts display other hallmarks of functionality, such as high expression or high conservation, which leads us to consider possible RNA functions that do not require extensive secondary structure. directional RNA-seq, Illumina GA-IIx
Project description:Defining the in vivo folding pathway of cellular RNAs is essential to understand how they reach their final native conformation. We here introduce a novel method, named Structural Probing of Elongating Transcripts (SPET-seq), that permits single-base resolution analysis of transcription intermediates’ secondary structures on a transcriptome-wide scale, enabling base-resolution analysis of the RNA folding events. Our results suggest that cotranscriptional RNA folding in vivo is a mixture of cooperative folding events, in which local RNA secondary structure elements are formed as they get transcribed, and non-cooperative events, in which 5΄-halves of long-range helices get sequestered into transient non-native interactions until their 3΄ counterparts have been transcribed. Together our work provides the first transcriptome-scale overview of RNA cotranscriptional folding in a living organism.
Project description:RNA structural transitions are important in the function and regulation of RNAs. Here, we reveal a layer of transcriptome organization in the form of RNA folding energies. By probing yeast RNA structures at different temperatures, we obtained relative melting temperatures (Tm) for RNA structures in over 4000 transcripts. Specific signatures of RNA Tm demarcated the polarity of mRNA open reading frames, and highlighted numerous candidate regulatory RNA motifs in 3' untranslated regions. RNA Tm distinguished non-coding versus coding RNAs, identified mRNAs with distinct cellular functions. We identified thousands of putative RNA thermometers, and their presence is predictive of the pattern of RNA decay in vivo during heat shock. The exosome complex recognizes unpaired bases during heat shock to degrade these RNAs, coupling intrinsic structural stabilities to gene regulation. Thus, genome-wide structural dynamics of RNA can parse functional elements of the transcriptome and reveal diverse biological insights. RNA structure probing at 5 different temperatures (23M-BM-0C , 30M-BM-0C , 37M-BM-0C , 55M-BM-0C and 75M-BM-0C) using RNase V1 on polyA-selected log phase S288C yeast RNAs was followed by library construction using a modified SOLiD small RNA cloning kit and deep sequencing on the SOLiD platform. We performed 2 biological replicates for each temperature.
Project description:Plasmodium falciparum is a deadly human pathogen responsible for the devastating disease called malaria. In this study, we measured the differential accumulation of RNA secondary structures in coding and noncoding transcripts from the asexual developmental cycle in P. falciparum in human red blood cells. Our comprehensive analysis that combined high-throughput nuclease mapping of RNA structures by duplex RNA-seq, SHAPE-directed RNA structure validation, immunoaffinity purification and characterization of antisense RNAs collectively measured differentially base-paired RNA regions throughout the parasite’s development. Our mapping data not only aligned to a diverse pool of RNAs with known structures but also enabled us to identify new structural RNA regions in the malaria genome. On average, approximately 71% of the genes with secondary structures are found to be protein coding mRNAs. The mapping pattern of these base-paired RNAs corresponded to all regions of protein-coding mRNAs, including the 5’ UTR, CDS and 3’ UTR as well as the start and stop codons. Histone family genes which are known to form secondary structures in their mRNAs and transcripts from genes which are important for transcriptional and post-transcriptional control, such as the unique plant-like transcription factor family, ApiAP2, DNA/RNA binding protein, Alba3 and proteins important for RBC invasion and malaria cytoadherence also showed strong accumulation of duplex RNA reads in various asexual stages in P. falciparum. Intriguingly, our study determined a positive relationship between mRNA structural contents and translation efficiency in P. falciparum asexual blood stages, suggesting an essential role of RNA structural changes in malaria gene expression programs.