Oncostatin M effects in IMR90 cells
Ontology highlight
ABSTRACT: The JAK2 mutation V617F is detectable in a majority of patients with Ph-negative myeloproliferative neoplasms (MPN). Enforced expression of JAK2 V617F in mice induces myeloproliferation and bone marrow (BM) fibrosis suggesting a causal role for the JAK2 mutant in the pathogenesis of MPN. However, little is known about mechanisms and effector molecules contributing to JAK2 V617F-induced myeloproliferation and fibrosis. Here we show that JAK2 V617F promotes expression of oncostatin M (OSM) in neoplastic myeloid cells. Correspondingly, OSM was found to be overexpressed in the BM and elevated in the serum of patients with JAK2 V617F+ MPN. In addition, OSM secreted by JAK2 V617F+ cells stimulated growth of fibroblasts and microvascular endothelial cells and induced the production of angiogenic and profibrogenic cytokines (HGF, VEGF, and SDF-1) in BM fibroblasts. All effects of MPN cell-derived OSM were blocked by a neutralizing anti-OSM antibody, whereas the production of OSM in MPN cells was effectively suppressed by a pharmacologic JAK2 inhibitor or RNAi-mediated knockdown of JAK2. In summary, JAK2 V617F-mediated upregulation of OSM may contribute to fibrosis, neoangiogenesis, and the cytokine storm observed in JAK2 V617F+ MPN, suggesting that OSM could serve as a novel therapeutic target molecule in these neoplasms.
ORGANISM(S): Homo sapiens
PROVIDER: GSE29655 | GEO | 2013/01/29
SECONDARY ACCESSION(S): PRJNA141247
REPOSITORIES: GEO
ACCESS DATA