Project description:Mst1/Mst2 are central components of Hippo pathway. We examined the role of Mst1/Mst2 in ES cell differentiation. In this data set, we include expression data from day 4 and day 8 Mst1/Mst2 knockout ES cell formed embryoid bodies and wild type embryoid body controls.
Project description:Mst1/Mst2 are central components of Hippo pathway. We examined the role of Mst1/Mst2 in ES cell differentiation. In this data set, we include expression data from day 4 and day 8 Mst1/Mst2 knockout ES cell formed embryoid bodies and wild type embryoid body controls. total 4 samples.
Project description:To unravel the molecular mechanism by which HOXB4 promotes the expansion of early hematopoietic progenitors within differentiating ES cells, we analzed the gene expression profiles of embryoid bodies (EBs) in which transcription of HOXB4 had been induced or not induced. A substantial number of the identified HOXB4 target genes are involved in signaling pathways important for controlling self-renewal, maintenance and differentiation of stem cells. Furthermore, we demonstrate that HOXB4 activity and FGF-signaling are intertwined. HOXB4-mediated expansion of ES cell-derived early progenitors was enhanced by specific and complete inhibition of FGF-receptors. In contrast, the expanding activity of HOXB4 on hematopoietic progenitors in day4-6 embryoid bodies was blunted in the presence of basic FGF (FGF2) indicating a dominant negative effect of FGF-signaling on the earliest hematopoietic cells. Taken together, we show that modulation of FGF signaling is an essential feature of HOXB4 activity in the context of embryonic hematopoiesis. Keywords: plus/minus induction of HOXB4 gene expression by treatment with doxycycline (Dox)
Project description:V6.5 mESCs over-expressing V5-tagged Csrp1 and wild-type mESCs were differentiated into embryoid bodies (EBs) and collected at day 9 for CLIP-seq.
Project description:To identify potential Elongin A targets during neuronal differentiation of ES cells, a cDNA microarray analysis comparing embryoid bodies (EBs) derived from Elongin A+/+ ES cells and Elongin A-/- ES cells was performed.
Project description:To identify potential Elongin A targets during neuronal differentiation of ES cells, a cDNA microarray analysis comparing embryoid bodies (EBs) derived from Elongin A+/+ ES cells and Elongin A-/- ES cells was performed. Gene expression in EBs derived from Elongin A+/+ and Elongin A-/- ES cells was measured at day 4 after retinoic acid treatment (2 ?M).
Project description:Analysis of embryonic sten cell-derived embryoid bodies following endoglin knock out. Loss of endoglin leads to profound reduction of key hematopoietic regulators including SCL, LMO2, Gata2, and TGF-? signaling molecule ALK-1. Results provide insight into molecular mechanisms underlying hemangioblast and primitive hematopoietic development. Total RNA obtained from differentiated day 3 EBs of endoglin knock out ES cells were compared to wild type E14 control ES cells.