Project description:ChIP-chip was used to compare DSB factor localization in wild type and pch2 strains 10 samples, 2-3 replicates each. Averaged data is available as a supplementary file on the Series record (below).
Project description:DNA double strand breaks (DSBs) in repetitive sequences are a potent source of genomic instability, due to the possibility of non-allelic homologous recombination (NAHR). Repetitive sequences are especially at risk during meiosis, when numerous programmed DSBs are introduced into the genome to initiate meiotic recombination 1. Within the budding yeast repetitive ribosomal (r)DNA array, meiotic DSB formation is prevented in part through Sir2-dependent heterochromatin 2,3. Here, we demonstrate that the edges of the rDNA array are exceptionally susceptible to meiotic DSBs, revealing an inherent heterogeneity within the rDNA array. We find that this localised DSB susceptibility necessitates a border-specific protection system consisting of the meiotic ATPase Pch2 and the origin recognition complex subunit Orc1. Upon disruption of these factors, DSB formation and recombination specifically increased in the outermost rDNA repeats, leading to NAHR and rDNA instability. Strikingly, the Sir2-dependent heterochromatin of the rDNA itself was responsible for the induction of DSBs at the rDNA borders in pch2? cells. Thus, while Sir2 activity globally prevents meiotic DSBs within the rDNA, it creates a highly permissive environment for DSB formation at the heterochromatin/euchromatin junctions. Heterochromatinised repetitive DNA arrays are abundantly present in most eukaryotic genomes. Our data define the borders of such chromatin domains as distinct high-risk regions for meiotic NAHR, whose protection may be a universal requirement to prevent meiotic genome rearrangements associated with genomic diseases and birth defects. This SuperSeries is composed of the following subset Series: GSE30071: ssDNA mapping in dmc1 strains GSE30072: ChIP-chip of DSB factors in wild type and pch2 strains Two types of study were undertaken to understand the regulation of meiotic DSB formation close to repetitive DNA elements in yeast. First, DSBs were mapped using ssDNA enrichment in strains isogenic for a dmc1 mutation, and also including pch2 delete, orc1-161, rdna delete and a reciprocal translocation between chromosomes 2 and 12 (trans2to12). Second, the association of the DSB factors Hop1, Rec114, Mer2, and Mre1, as well as total histone H3 and H3K4-trimethylation were measured by ChIP-chip analysis in wild-type and pch2 delete strains.
Project description:ChIP-chip was used to compare DSB factor localization in wild-type and checkpoint mutant strains under S phase checkpoint inducing and uninducing conditions. We analyzed the DNA binding of factors associated with meiotic DNA replication and DSB formation by chromatin immunoprecipitation (ChIP), including; the replicative helicase Mcm2-7 and the meiotic DSB factors Mer2, Rec114 and Mre11. Immunoprecipitated and input DNA samples were differentially labeled and cohybridized to a single microarray. We have included 2-3 biological replicates of each experiment, including one dye swap experiment.
Project description:ChIP-chip was used to compare DSB factor localization in wild-type and checkpoint mutant strains under S phase checkpoint inducing and uninducing conditions.
Project description:Pch2 is an AAA+ protein that controls DNA break formation, recombination and checkpoint signaling during meiotic G2/prophase. Chromosomal association of Pch2 is linked to these processes, and several factors influence the association of Pch2 to euchromatin and the specialized chromatin of the ribosomal (r)DNA array of budding yeast. Here, we describe a comprehensive mapping of Pch2 localization across the budding yeast genome during meiotic G2/prophase. Within non-rDNA chromatin, Pch2 associates with a subset of actively RNA Polymerase II (RNAPII)-dependent transcribed genes. Chromatin immunoprecipitation (ChIP)- and microscopy-based analysis reveals that active transcription is required for chromosomal recruitment of Pch2. Similar to what was previously established for association of Pch2 with rDNA chromatin, we find that Orc1, a component of the Origin Recognition Complex (ORC), is required for the association of Pch2 to these euchromatic, transcribed regions, revealing a broad connection between chromosomal association of Pch2 and Orc1/ORC function. Ectopic mitotic expression is insufficient to drive recruitment of Pch2, despite the presence of active transcription and Orc1/ORC in mitotic cells. This suggests meiosis-specific ‘licensing’ of Pch2 recruitment to sites of transcription, and accordingly, we find that the synaptonemal complex (SC) component Zip1 is required for the recruitment of Pch2 to transcription-associated binding regions. Interestingly, Pch2 binding patterns are distinct from meiotic axis enrichment sites (as defined by Red1, Hop1 and Rec8). This suggests that although Pch2 is linked to axis/SC-directed recruitment and function, the chromosomal population of Pch2 described here is not directly associated with chromosomal axis sites. In line with this observation, interfering with the pool of Pch2 that associates with active RNAPII transcription does not lead to effects on the chromosomal abundance of Hop1, a known axial client of Pch2. We thus report characteristics and dependencies for Pch2 recruitment to meiotic chromosomes, and reveal an unexpected link between Pch2, SC formation, chromatin and active transcription.
Project description:The Spo11-generated double-strand breaks (DSBs) that initiate meiotic recombination are non-randomly distributed across the genome. Here, we use Spo11-oligonucleotide complexes, a byproduct of DSB formation, to map the distribution of meiotic DSBs in pch2 and sir2 mutant strains of Saccharomyces cerevisiae.
Project description:Pch2 is an AAA+ protein that controls DNA break formation, recombination and checkpoint signaling during meiotic G2/prophase. Chromosomal association of Pch2 is linked to these processes, and several factors influence the association of Pch2 to euchromatin and the specialized chromatin of the ribosomal (r)DNA array of budding yeast. Here, we describe a comprehensive mapping of Pch2 localization across the budding yeast genome during meiotic G2/prophase. Within non-rDNA chromatin, Pch2 associates with a subset of actively RNA Polymerase II (RNAPII)-dependent transcribed genes. Chromatin immunoprecipitation (ChIP)- and microscopy-based analysis reveals that active transcription is required for chromosomal recruitment of Pch2. Similar to what was previously established for association of Pch2 with rDNA chromatin, we find that Orc1, a component of the Origin Recognition Complex (ORC), is required for the association of Pch2 to these euchromatic, transcribed regions, revealing a broad connection between chromosomal association of Pch2 and Orc1/ORC function. Ectopic mitotic expression is insufficient to drive recruitment of Pch2, despite the presence of active transcription and Orc1/ORC in mitotic cells. This suggests meiosis-specific ‘licensing’ of Pch2 recruitment to sites of transcription, and accordingly, we find that the synaptonemal complex (SC) component Zip1 is required for the recruitment of Pch2 to transcription-associated binding regions. Interestingly, Pch2 binding patterns are distinct from meiotic axis enrichment sites (as defined by Red1, Hop1 and Rec8). This suggests that although Pch2 is linked to axis/SC-directed recruitment and function, the chromosomal population of Pch2 described here is not directly associated with chromosomal axis sites. In line with this observation, interfering with the pool of Pch2 that associates with active RNAPII transcription does not lead to effects on the chromosomal abundance of Hop1, a known axial client of Pch2. We thus report characteristics and dependencies for Pch2 recruitment to meiotic chromosomes, and reveal an unexpected link between Pch2, SC formation, chromatin and active transcription.
Project description:ssDNA enrichment was used to map and compare DSB hotspots in dmc1, pch2 dmc1, sir2 dmc1, orc1-161 dmc1, dmc1 rdnadelete and dmc1 chr2:12 translocation strains.
Project description:DNA double strand breaks (DSBs) in repetitive sequences are a potent source of genomic instability, due to the possibility of non-allelic homologous recombination (NAHR). Repetitive sequences are especially at risk during meiosis, when numerous programmed DSBs are introduced into the genome to initiate meiotic recombination 1. Within the budding yeast repetitive ribosomal (r)DNA array, meiotic DSB formation is prevented in part through Sir2-dependent heterochromatin 2,3. Here, we demonstrate that the edges of the rDNA array are exceptionally susceptible to meiotic DSBs, revealing an inherent heterogeneity within the rDNA array. We find that this localised DSB susceptibility necessitates a border-specific protection system consisting of the meiotic ATPase Pch2 and the origin recognition complex subunit Orc1. Upon disruption of these factors, DSB formation and recombination specifically increased in the outermost rDNA repeats, leading to NAHR and rDNA instability. Strikingly, the Sir2-dependent heterochromatin of the rDNA itself was responsible for the induction of DSBs at the rDNA borders in pch2? cells. Thus, while Sir2 activity globally prevents meiotic DSBs within the rDNA, it creates a highly permissive environment for DSB formation at the heterochromatin/euchromatin junctions. Heterochromatinised repetitive DNA arrays are abundantly present in most eukaryotic genomes. Our data define the borders of such chromatin domains as distinct high-risk regions for meiotic NAHR, whose protection may be a universal requirement to prevent meiotic genome rearrangements associated with genomic diseases and birth defects. This SuperSeries is composed of the SubSeries listed below.
Project description:ssDNA enrichment was used to map and compare DSB hotspots in dmc1, pch2 dmc1, sir2 dmc1, orc1-161 dmc1, dmc1 rdnadelete and dmc1 chr2:12 translocation strains. 6 samples, 2 replicates each. Averaged data is available as a supplementary file on the Series record (below).