Project description:This SuperSeries is composed of the following subset Series: GSE29985: Identification by ChIP-on-Chip of ARX target genes, a transcription factor implicated in mental retardation and epilepsy GSE30190: Comparison of gene expression between Arx-transfected N2a cells and cells transfected by the corresponding empty vector Refer to individual Series
Project description:Genetic investigations of X-linked intellectual disabilities have implicated the ARX (Aristaless-related homeobox) gene in a wide spectrum of disorders extending from phenotypes characterised by severe neuronal migration defects such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities but with associated features of dystonia and epilepsy. Analysis of Arx spatio-temporal localisation profile in mouse revealed expression in telencephalic structures, mainly restricted to populations of GABAergic neurons at all stages of development. Furthermore, studies of the effects of ARX loss of function in humans and animal models revealed varying defects, suggesting multiple roles of this gene during brain development. However, to date, little is known about how ARX functions as a transcription factor and the nature of its targets. To better understand its role, we combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified a total of 1006 gene promoters bound by Arx in transfected neuroblastoma (N2a) cells and in mouse embryonic brain. Some of these promoters were enriched for a sequence very similar to a motif previously identified as Arx-binding motif and approximately 24% of Arx-bound genes were found to show expression changes following Arx overexpression or knock-down. Several of the Arx target genes we identified are known to be important for a variety of functions in brain development, including axonal guidance and synaptic plasticity and some of them suggest new functions for Arx. Overall, these results identified multiple new candidate targets for Arx and should help to better understand the pathophysiological mechanisms of intellectual disability and epilepsy associated with ARX mutations.
Project description:Genetic investigations of X-linked intellectual disabilities have implicated the ARX (Aristaless-related homeobox) gene in a wide spectrum of disorders extending from phenotypes characterised by severe neuronal migration defects such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities but with associated features of dystonia and epilepsy. Analysis of Arx spatio-temporal localisation profile in mouse revealed expression in telencephalic structures, mainly restricted to populations of GABAergic neurons at all stages of development. Furthermore, studies of the effects of ARX loss of function in humans and animal models revealed varying defects, suggesting multiple roles of this gene during brain development. However, to date, little is known about how ARX functions as a transcription factor and the nature of its targets. To better understand its role, we combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified a total of 1006 gene promoters bound by Arx in transfected neuroblastoma (N2a) cells and in mouse embryonic brain. Some of these promoters were enriched for a sequence very similar to a motif previously identified as Arx-binding motif and approximately 24% of Arx-bound genes were found to show expression changes following Arx overexpression or knock-down. Several of the Arx target genes we identified are known to be important for a variety of functions in brain development, including axonal guidance and synaptic plasticity and some of them suggest new functions for Arx. Overall, these results identified multiple new candidate targets for Arx and should help to better understand the pathophysiological mechanisms of intellectual disability and epilepsy associated with ARX mutations. ChIP-Chip experiments were performed with either Arx transfected N2a cells or mouse embryonic brains (E15.5). Three replicates were performed for each condition.
Project description:Profiling the genomic profiles of mental retardation patients. 13 mental retardation patients were selected for detection of genomic aberrations.
Project description:Profiling the genomic profiles of mental retardation patients. 13 mental retardation patients were selected for detection of genomic aberrations. Patient's DNA were hybridized against Promega control on Agilent G4426B arrays and scanned with the Agilent G2505B scanner.
Project description:Physical mapping of the breakpoints of a pericentric inversion of the X chromosome (46,X,inv[X][p21q27]) in a female patient with mild mental retardation revealed localization of the Xp breakpoint in the IL1RAPL gene at Xp21.3 and the Xq breakpoint near the SOX3 gene (SRY [sex determining region Y]-box 3) (GenBank accession number NM_005634) at Xq26.3. Because carrier females with microdeletion in the IL1RAPL gene do not present any abnormal phenotype, we focused on the Xq breakpoint. However, we were unable to confirm the involvement of SOX3 in the mental retardation in this female patient. To validate SOX3 as an X-linked mental retardation (XLMR) gene, we performed mutation analyses in families with XLMR whose causative gene mapped to Xq26-q27. We show here that the SOX3 gene is involved in a large family in which affected individuals have mental retardation and growth hormone deficiency. The mutation results in an in-frame duplication of 33 bp encoding for 11 alanines in a polyalanine tract of the SOX3 gene. The expression pattern during neural and pituitary development suggests that dysfunction of the SOX3 protein caused by the polyalanine expansion might disturb transcription pathways and the regulation of genes involved in cellular processes and functions required for cognitive and pituitary development.
Project description:Posttranscriptional regulation is an important control mechanism governing gene expression in neurons. We recently demonstrated that VCX-A, a protein implicated in X-linked mental retardation, is an RNA-binding protein that specifically binds the 5' end of capped mRNAs to prevent their decapping and decay. Previously, expression of VCX-A was reported to be testes restricted. Consistent with a role in cognitive function, we demonstrate that VCX-A is ubiquitously expressed in human tissues including the brain. Moreover, retinoic acid-induced differentiation of human SH-SY5Y neuroblastoma cells promoted the accumulation of VCX-A in distinct cytoplasmic foci within neurites that colocalize with staufen1-containing RNA granules, suggesting a role in translational suppression and/or mRNA transport. Exogenous expression of VCX-A in rat primary hippocampal neurons, which normally do not express the primate-restricted VCX proteins, promoted neurite arborization, and shRNA-directed knockdown of the VCX genes in SH-SY5Y cells resulted in a reduction of both primary and secondary neurite projections upon differentiation. We propose that the cap-binding property of VCX-A reflects a role of this protein in mRNA translational regulation. In support of this hypothesized role, we demonstrate that VCX-A can specifically bind a subset of mRNAs involved in neuritogenesis and is also capable of promoting translational silencing. Thus, VCX-A contains the capacity to modulate the stability and translation of a subset of target mRNAs involved in neuronal differentiation and arborization. It is plausible that defects of these functions in the absence of the VCX genes could contribute to a mental retardation phenotype.
Project description:Mutation of the coiled-coil and C2 domain-containing 1A (CC2D1A) gene, which encodes a C2 domain and DM14 domain-containing protein, has been linked to severe autosomal recessive nonsyndromic mental retardation. Using a mouse model that produces a truncated form of CC2D1A that lacks the C2 domain and three of the four DM14 domains, we show that CC2D1A is important for neuronal differentiation and brain development. CC2D1A mutant neurons are hypersensitive to stress and have a reduced capacity to form dendrites and synapses in culture. At the biochemical level, CC2D1A transduces signals to the cyclic adenosine 3',5'-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit to the nucleus is also defective in CC2D1A mutant cells. Consistently, phosphorylation of the PKA target cAMP-responsive element-binding protein, at serine 133, is nearly abolished in CC2D1A mutant cells. The defects in cAMP/PKA signaling were observed in fibroblast, macrophage, and neuronal primary cells derived from the CC2D1A KO mice. CC2D1A associates with the cAMP-PKA complex following forskolin treatment and accumulates in vesicles or on the plasma membrane in wild-type cells, suggesting that CC2D1A may recruit the PKA complex to the membrane to facilitate signal transduction. Together, our data show that CC2D1A is an important regulator of the cAMP/PKA signaling pathway, which may be the underlying cause for impaired mental function in nonsyndromic mental retardation patients with CC2D1A mutation.