Project description:Quorum sensing is a cell to cell communication process that involves chemical signaling. Yersinia pestis, the agent of plague, has two functional AHL quorum sensing systems Ysp and Ype. For several reasons, it was not clear what effect AHL pathways have on virulence gene expression and survival in the two different hosts, flea and human. To investigate to what effect AHL quorum sensing has on gene expression, we conducted microarray studies comparing Yersinia pestis CO92 (∆pgm) to a double AHL mutant strain (∆pgm ΔypeIR ΔyspIR) at 37°C.
Project description:Quorum sensing is a cell to cell communication process that involves chemical signaling. Yersinia pestis, the agent of plague, has two functional AHL quorum sensing systems Ysp and Ype. For several reasons, it was not clear what effect AHL pathways have on virulence gene expression and survival in the two different hosts, flea and human. To investigate to what effect Ysp AHL quorum sensing has on gene expression, we conducted microarray studies comparing Yersinia pestis CO92 (∆pgm) to a single AHL mutant strain (∆pgm ΔyspI) at 37°C.
Project description:Quorum sensing is a cell to cell communication process that involves chemical signaling. Yersinia pestis, the agent of plague, has two functional AHL quorum sensing systems Ysp and Ype. For several reasons, it was not clear what effect AHL pathways have on virulence gene expression and survival in the two different hosts, flea and human. To investigate to what effect AHL quorum sensing has on gene expression, we conducted microarray studies comparing Yersinia pestis CO92 (∆pgm) to a double AHL mutant strain (∆pgm ΔypeIR) at 30°C.
Project description:Quorum sensing is a cell to cell communication process that involves chemical signaling. Yersinia pestis, the agent of plague, has two functional AHL quorum sensing systems Ysp and Ype. For several reasons, it was not clear what effect AHL pathways have on virulence gene expression and survival in the two different hosts, flea and human. To investigate to what effect Ysp AHL quorum sensing has on gene expression, we conducted microarray studies comparing Yersinia pestis CO92 (∆pgm) to a single AHL mutant strain (∆pgm ΔyspI) at 30°C.
Project description:Quorum sensing is a cell to cell communication process that involves chemical signaling. Yersinia pestis, the agent of plague, has two functional AHL quorum sensing systems Ysp and Ype. For several reasons, it was not clear what effect AHL pathways have on virulence gene expression and survival in the two different hosts, flea and human. To investigate to what effect AHL quorum sensing has on gene expression, we conducted microarray studies comparing Yersinia pestis CO92 (âpgm) to a double AHL mutant strain (âpgm ÎypeIR ÎyspIR) at 37°C. Six independent RNA samples from Y. pestis CO92 R114 AHL deficient cultures were paired with six independent RNA samples from control Y. pestis CO92 R88 cultures for hybridization to six two-color microarrays. For three arrays, the control RNA sample was labeled with Alexa 555 dye and the experimental RNA sample was labeled with Alexa 647 dye; the dyes were reversed for the other three arrays to account for any dye bias.
Project description:Quorum sensing is a cell to cell communication process that involves chemical signaling. Yersinia pestis, the agent of plague, has two functional AHL quorum sensing systems Ysp and Ype. For several reasons, it was not clear what effect AHL pathways have on virulence gene expression and survival in the two different hosts, flea and human. To investigate to what effect AHL quorum sensing has on gene expression, we conducted microarray studies comparing Yersinia pestis CO92 (â??pgm) to a double AHL mutant strain (â??pgm Î?ypeIR) at 30°C. Six independent RNA samples from Y. pestis CO92 Î?pgm Î?ypeIR cultures were paired with six independent RNA samples from control Y. pestis CO92 R88 cultures for hybridization to six two-color microarrays. For three arrays, the control RNA sample was labeled with Alexa 555 dye and the experimental RNA sample was labeled with Alexa 647 dye; the dyes were reversed for the other three arrays to account for any dye bias.
Project description:Quorum sensing is a cell to cell communication process that involves chemical signaling. Yersinia pestis, the agent of plague, has two functional AHL quorum sensing systems Ysp and Ype. For several reasons, it was not clear what effect AHL pathways have on virulence gene expression and survival in the two different hosts, flea and human. To investigate to what effect Ysp AHL quorum sensing has on gene expression, we conducted microarray studies comparing Yersinia pestis CO92 (âpgm) to a single AHL mutant strain (âpgm ÎyspI) at 37°C. Six independent RNA samples from Y. pestis CO92 Îpgm ÎyspI cultures were paired with six independent RNA samples from control Y. pestis CO92 R88 cultures for hybridization to six two-color microarrays. For three arrays, the control RNA sample was labeled with Alexa 555 dye and the experimental RNA sample was labeled with Alexa 647 dye; the dyes were reversed for the other three arrays to account for any dye bias.