Deep sequencing of MYC DNA-binding sites in Burkitt's lymphoma
Ontology highlight
ABSTRACT: Background: MYC is a transcription factor encoded by the c-MYC gene (thereafter termed MYC). MYC is key transcription factor involved in many central cellular processes including ribosomal biogenesis. MYC is overexpressed in the majority of human tumours including aggressive B-cell lymphoma especially Burkitt's lymphoma. Although Burkitt's lymphoma is a highlight example for MYC overexpression due to a chromosomal translocation, no global analysis of MYC binding sites by chromatin immunoprecipitation (ChIP) followed by global next generation sequencing (ChIP-Seq) has been conducted so far in Burkitt's lymphoma. Methodology/Principal Findings: ChIP-Seq was performed with a MYC-specific antibody giving rise to 7,054 predicted MYC binding sites after bioinformatics analysis of a total of 19 million sequence reads. In line with previous findings, binding sites accumulate in gene sets known to be involved in the ribosomal biogenesis, histone acetyltransferase and methyltransferase complexes and the cell cycle demonstrating a regulatory role of MYC in these processes. Unexpectedly, MYC binding sites also accumulate in genes typically expressed in mature B-cells. To assess the functional consequences of altered MYC binding, the ChIP-Seq data were supplemented with siRNA mediated knock-downs of MYC in BL cell lines followed by gene expression profiling. Interestingly, amongst others, genes involved in B-cell function were up-regulated in response to MYC silencing. Conclusion/Significance: The 7,054 MYC-binding sites identified by our ChIP-Seq approach greatly extend the knowledge regarding MYC binding in Burkitt's lymphoma and sheds further light on the enormous complexity of the MYC regulatory network. Especially our observation that (i) many B-cell relevant genes are targeted by MYC and (ii) that MYC down-regulation leads to an up-regulation of B-cell genes highlights an interesting aspect of Burkitt´s lymphoma biology.
ORGANISM(S): Homo sapiens
PROVIDER: GSE30726 | GEO | 2011/11/28
SECONDARY ACCESSION(S): PRJNA144391
REPOSITORIES: GEO
ACCESS DATA