Deep sequencing of pyrethroid-resistant bed bugs reveals multiple mechanisms of resistance within a single population
Ontology highlight
ABSTRACT: A frightening resurgence of bed bug infestations has occurred over the last 10 years in the US. Current chemical methods have been inadequate for controlling bed bugs due to widespread insecticide resistance. Little is known about the mechanisms of resistance present in US bed bug populations, making it extremely difficult to develop intelligent strategies to control this pest. We have identified bed bugs collected in Richmond, VA which exhibit both kdr-type (L925I) and metabolic resistance to pyrethroid insecticides. LD50 bioassays determined resistance ratios of ~6000-fold to the insecticide deltamethrin, with contact bioassays confirming cross-resistance to several other labeled formulations. To identify metabolic genes potentially involved in the detoxification of pyrethroids, we performed deep-sequencing of the adult bed bug transcriptome, obtaining more than 2.5 million reads on the 454 titanium platform. Following assembly, analysis of newly identified gene transcripts in both Harlan (susceptible) and Richmond (resistant) bed bugs revealed several candidate cytochrome P450 and carboxyesterase genes which were significantly over-expressed in the resistant strain, consistent with the idea of increased metabolic resistance. These data will accelerate efforts to understand the biochemical basis for insecticide resistance in bed bugs, and provide molecular markers to assist in the surveillance of metabolic resistance.
ORGANISM(S): Cimex lectularius
PROVIDER: GSE31025 | GEO | 2011/10/19
SECONDARY ACCESSION(S): PRJNA144889
REPOSITORIES: GEO
ACCESS DATA