Chromatin and siRNA pathways cooperate to maintain DNA methylation
Ontology highlight
ABSTRACT: DNA methylation occurs at preferred sites in eukaryotes, although the basis for preference is not known. We use a microarray-based profiling method to explore the involvement of Arabidopsis CMT3 and DRM DNA methyltransferases, a histone H3 lysine-9 methyltransferase (KYP) and an Argonaute-related RNA silencing component (AGO4) in methylating target loci. We find that KYP targets are also CMT3 targets, suggesting that histone methylation maintains CNG methylation genome-wide. CMT3 and KYP targets show similar proximal distributions that corresponds to the overall distribution of transposable elements of all types, whereas DRM targets are distributed more distally along the chromosome. We find an inverse relationship between element size and loss of methylation in ago4 and drm mutants. Our results suggest that RNA-directed DNA methylation is required to silence isolated elements that may be too small to be maintained in a silent state by a chromatin-based mechanism. Thus, parallel pathways would be needed to maintain silencing of transposable elements. Keywords: Methylation profiling using Msp I enzyme
ORGANISM(S): Arabidopsis thaliana
PROVIDER: GSE3109 | GEO | 2005/10/25
SECONDARY ACCESSION(S): PRJNA93117
REPOSITORIES: GEO
ACCESS DATA